

TAD-494.4

GROUND INSTRUCTOR INSTRUMENT

Written Test Guide

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

GROUND INSTRUCTOR INSTRUMENT WRITTEN TEST GUIDE

AC 143-2B

Revised 1971

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Contents

	Page
Introduction	1
Requirements for certificates and ratings	1
The written test	1
Taking the test	2
Reference materials	2
How to obtain study materials	4
Study outline	4
Sample test	11
Analysis of answers to sample test items	18
Appendix Figure	
1. Flight time analysis	25
2. Stall speed multiplier or load factor	27
3. Airplane thrust and power required	28
4. Weather depiction chart	29
5. Area forecast (MKC)	30
6. Area forecast (DEN)	31
7. 12-hour upper wind prog	32
8. Aviation weather report	33
9. Power setting table	34
10. Part throttle fuel consumption chart	34
11. Single engine climb rate chart	35
12. True airspeed chart	35
13. Pressure altitude density chart	36
14. Instrument approach procedure charts—Denver, Colo.	37
15. Segment of low altitude enroute chart L-6	39
16. Kansas City area chart	41
17. Instrument approach procedure charts—Kansas City, Mo.	42
18. Instrument approach procedure charts—Salina, Kans.	43

Contents

	Page
Introduction	1
Requirements for certificates and ratings	1
The written test	1
Taking the test	2
Reference materials	2
How to obtain study materials	4
Study outline	4
Sample test	11
Analysis of answers to sample test items	18
Appendix	
Figure	
1. Flight time analysis	25
2. Stall speed multiplier or load factor	27
3. Airplane thrust and power required	28
4. Weather depiction chart	29
5. Area forecast (MKC)	30
6. Area forecast (DEN)	31
7. 12-hour upper wind prog	32
8. Aviation weather report	33
9. Power setting table	34
10. Part throttle fuel consumption chart	34
11. Single engine climb rate chart	85
12. True airspeed chart	35
13. Pressure altitude density chart	36
14. Instrument approach procedure charts—Denver, Colo.	37
15. Segment of low altitude enroute chart L-6	39
16. Kansas City area chart	41
17. Instrument approach procedure charts—Kansas City, Mo	42
18. Instrument approach procedure charts—Salina, Kans.	43

Ground Instructor—Instrument—Written Test Guide

Introduction

This written test guide has been prepared by the Flight Standards Service of the Federal Aviation Administration to assist applicants preparing for the Ground Instructor-Instrument-Written Test. It outlines the scope of aeronautical knowledge covered in the test for the Instrument Ground Instructor Rating and suggests the subject areas in which the applicant should be well informed.

This guide is not offered as a quick and easy way to gain the knowledge necessary for passing the written test. There is no substitute for diligent study to attain basic knowledge. Neither is there an alternative to persistent effort for developing competence. Continuous review is essential to remain current in the many areas where technological change is the rule rather than the exception.

An applicant for the Instrument Ground Instructor Rating should make a thorough review of the "Study Outline" given in this guide. If an area of weakness is found, he should study that area until he has confidence in his ability to teach the material to students. After the review, he should take the sample test without aid, and then compare his answers with those in the "Analysis of Answers to Sample Test Items" found at the end of the sample test. If nearly all of his answers are correct, he is probably prepared to take the Ground Instructor-Instrument-Written Test. The applicant should keep in mind, however, that the required test will cover considerably more areas of knowledge than found in the saruple test.

Requirements for Certificates and Ratings

Eligibility requirements for ground instructor certificates are outlined in Volume IX, Part 143 of Federal Aviation Regulations. Ratings are as follows: Ground Instructor Basic—Qualifies the holder to instruct in a basic pilot ground school.

Ground Instructor Advanced—Qualifies the holder to instruct in basic or advanced pilot ground school.

Ground Instructor Instrument—Qualifies the holder for ground instruction in an instrument flying school, and for the operation of instrument procedures training devices.

Applicants who do not hold a ground instructor certificate must take a written test on "Fundamentals of Instructing," as well as a written test for the rating desired.* Holders of a ground instructor certificate, with one or more ratings, are not required to retake the Fundamentals of Instructing test to obtain additional ratings. An applicant who holds a currently effective teacher certificate issued by a State, county, or city authorizing him to instruct in a junior or senior high school, or who is regularly employed as an instructor in an accredited college or university, shall be relieved from taking the written test on the "Fundamentals of Instructing."

The Written Test

The Ground Instructor Instrument Written Test emphasizes aeronautical knowledge areas in which the instrument ground instructor should be prepared to teach. Test items require a knowledge of air traffic, communications, and navigation procedures; operating principles of air navigation radio aids; and instrument flight techniques. The applicant

[•] For study guidance and reference materials for the test on "Fundamentals of Instructing," the applicant should consult the Ground Instructor Examination Guide, Basic-Advanced, AC 143-1B, available from the Superintendent of Documents, Government Printing Office for \$1.00.

must apply his knowledge of regulations, preflight duties, inflight operation, weather, navigation aids and procedures. The official test booklets include appropriate planning materials similar to those which appear in the appendix of this guide.

The Ground Instructor-Instrument-Written Test consists of multiple-choice questions similar to those shown in the sample test in this guide. The applicant indicates his choice of answers on a special answer sheet. Directions for taking the test and for marking the answers should be read carefully and understood by the applicant before he begins the test. Incomplete or erroneous personal information on the answer sheet may delay the scoring process. Approximately 5 hours are allowed to complete the test.

The applicant is notified of his grade on Airman Written Test Report, AC Form 8060-37. The report also contains coded indications of the subject matter involved in items missed by the applicant on the test. A Written Test Subject Matter Outline is provided to relate the codes to specific areas of knowledge. The Study Outline contained in this guide is similar to the Subject Matter Outline the applicant receives with AC Form 8060-37. An applicant who has successfully passed the required test should present AC Form 8060-37 to the Flight Standards District Office for issuance of the Ground Instructor Certificate with the appropriate rating.

An applicant who receives a failing grade must present the AC Form 8060-37 when appearing for retesting. He may apply for retesting—(a) after 30 days after the date he failed the test; or (b) upon presenting a statement from an appropriately rated certificated ground instructor certifying that he has given the applicant at least 5 hours additional instruction in the areas failed and now considers that he can pass the test.

Taking the Test

The test may be taken at Flight Standards District Offices of the FAA and at other designated places.

Bear in mind the following points when taking the test:

- 1. Answer test items in accordance with the latest regulations and procedures.
- 2. Read every question thoroughly. Comments received from applicants indicate that unsatisfactory performance on the written test is frequently the result of failure to read carefully rather than lack of knowledge. Do not try to solve the problem before understanding the question.
- 3. Do not consider a complicated problem a "trick" question; each question has a specific objective. There is no deliberate attempt to trick applicants.
- 4. There is only one correct and complete answer for each item.
- 5. Do not waste too much time on problems that confuse you. Go on to the questions that you can answer readily, then return to the more difficult items.
- 6. In solving a computer problem, select the answer closest to your solution. If you have solved the problem correctly, your solution will be nearest to the correct answer because the correct answer is an average of the answers obtained by using several types of computers.

Reference Materials

Persons studying for the Ground Instructor-Instrument-Written Test will find the publications listed in this section most helpful. The list identifies material essential to preparing for the test but does not include all material available in the subject areas. Textbooks and reference materials are available from various commercial publishers. Many public and institutional libraries offer study materials in both teaching methods and aeronautical subject areas. It is the responsibility of each applicant to obtain study material appropriate to his need.

AIRMAN'S INFORMATION MANUAL (AIM)

This publication presents, in four parts, information necessary for the planning and conduct of flights in the National Airspace System. Besides providing frequently updated airport and NAVAID data, the AIM includes instructional and procedural informa-

tion, and is designed for use in the cockpit. Each part is available by annual subscription at the prices shown.

	Additional	
	for	
		Foreign
	Price	Mailing
Part 1, Basic Flight Manual and ATC		
Procedures. (Issued quarterly)	\$ 4.00	\$1.00
Part 2, Airport Directory. (Issued		
semiannually)	\$ 4.00	\$1.00
Part 3 and SA, Operational Data and		
Notices to Airmen. (Operational		
data issued every 28 days; Notices		
to Airmen issued every 14 days)	\$20.00	\$5.00
Part 4, Graphic Notices and Supple-		
mental Data (Issued semiannually)	\$ 1.50	\$0.50

FEDERAL AVIATION REGULATIONS

The subscription prices listed include automatic revision service to all Parts contained in the Volume ordered. The FAR Parts contained in each Volume are listed in the "Advisory Circular Checklist and Status of Federal Aviation Regulations."

Auumona		
f		for
		Foreign
F	rice	Mailing
\$	1.50	\$0.50
\$	6.00	\$1.50
\$	5.00	\$1.25
\$	2.75	\$0.75
\$	6.50	\$1.75
\$	6.00	\$1.50
	* * * *	Price \$ 1.50 \$ 6.00 \$ 5.00 \$ 2.75

HANDBOOKS

Flight Instructor's Handbook, AC 61-16 (\$1.25 — GPO — FAA 5.8/2:F 64/7. This handbook has been prepared for the information and guidance of pilots preparing for the flight instructor certificate and for use as a reference by certificated flight and ground instructors. This handbook will be most useful

to those preparing for the Fundamentals of Instructing Section of the Ground Instructor Written Test.

Instrument Flying Handbook, AC 61-27 (\$2.50—GPO—TD 4.408:In 7/3). This is a basic text for instrument pilots. It deals with training considerations, aerodynamic factors, physiological factors, flight instruments and their use, air navigation aids, communications, the air traffic system, and flight planning.

Aviation Weather, AC 00-6 (\$4.00—GPO—FAA 5.8/2:W 37). An excellent reference treating phases of meteorology of interest to the instructor. Aviation weather reports and forecasts are also covered with respect to format and content.

Pilot's Weight and Balance Handbook, AC 91-23 (70¢—GPO—TD 4.408:P 64/3). Presented from the viewpoint of the pilot, this handbook pays particular attention to the aircraft loading problems of general aviation pilots when operating light aircraft, including twin-engine and air-taxi types. The text progresses from an explanation of basic fundamentals to the complex application of weight and balance principles in large aircraft operations.

CHARTS

Additional

Instrument Approach Procedure Charts. Individual charts give detailed information on procedures for specific airports.

Enroute Charts: Low-Altitude and High-Altitude. These charts provide the necessary aeronautical information for en route instrument navigation.

Low-Altitude Area Charts. These charts supplement the Enroute Charts by providing departure, arrival, and holding procedures at principal airports.

Advisory Circulars

The following Advisory Circulars pertain to areas of knowledge listed in the Study Outline and are free of charge: 00-17, 00-24, 20-32A, 60-4, 60-6, 90-1A, 90-12, 90-14A, 90-22B, 90-23A, 90-35, 90-36, 90-38A, 90-41, 90-46, 91-8A, 91-19, 91-30, 170-3B.

EXAM-O-GRAMS

VFR Exam-O-Grams and IFR Exam-O-Grams are nondirective in nature and are issued solely as an information service to individuals interested in airman written tests.

How To Obtain Study Materials

The study materials listed, except the charts, free Advisory Circulars, and Exam-O-Grams, may be obtained by remitting check or money order to:

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

To expedite your order when ordering publications from the Superintendent of Documents, be sure to include with the title of single publications the GPO catalog number given in the price line (e.g., TD 4.408:In 7/3 or FAA 5/8:W 37). Order subscription and single publications separately.

The National Ocean Survey publishes and distributes aeronautical charts of the United States. Charts for foreign areas are published by the U.S. Air Force Aeronautical Chart and Information Center (ACIC) and are sold to civil users by the National Ocean Survey.

A "Catalog of Aeronautical Charts and Related Publications" listing their prices and instructions for ordering may be obtained free, on request, from:

Distribution Division (C-44) National Ocean Survey Washington, D.C. 20235

Orders for specific charts or publications should be accompanied by check or money order made payable to, "NOS, Dept of Commerce."

Exam-O-Grams may be obtained free of charge (one copy per each request) and names may be added to the mailing list by writing to:

Department of Transportation FAA Aeronautical Center Flight Standards Technical Division Operations Branch, AC-240 P.O. Box 25082 Oklahoma City, Okla. 73125

Advisory Circular titles and a summary of what each contains may be obtained by requesting an "Advisory Circular Checklist and Status of Federal Aviation Regulations," from:

Department of Transportation Federal Aviation Administration Distribution Unit, TAD-484.3 Washington, D.C. 20590

Study Outline

This study outline indicates the areas of aeronautical knowledge which pertain to the written test. It expands the general aeronautical knowledge requirements set forth in Federal Aviation Regulations, and is based on airman activity for flight under Instrument Flight Rules.

REFERENCE CODE:

AIM—Airman's Information Manual EOG—IFR Exam-O-Gram AC—Advisory Circular AW—Aviation Weather (AC 00-6) FAR—Federal Aviation Regulations IFH—Instrument Flying Handbook

PILOT RESPONSIBILITIES (FAR)
A01. Authority and Limitations

Pilot-in-Command (91.3) Emergency action (91.3) deviation from rules reports required

A02. Certificates and Ratings (61.3, 61.15, 61.16)

Instrument rating requirements (61.35)
when required (61.3, 91.97)
written test unauthorized conduct
(61.20)
retesting after failure (61.27)
Medical certificates (61.43)
Instrument flight time (AC 61-9)
pilot logbooks (61.39)
recent flight experience, (61.47,
91.21)
simulated (91.21)

Certificate reports	91.105, 91.107)
change name (61.13)	IFR approaches (91.117)
lost certificates (61.13)	descent below MDA or DH
change address (61.51)	unusable components and aids
A03. Preflight Action for Flight (91.5,	Aircraft speed (91.70)
AIM-1, EOG-31)	A08. Enroute Limitations (AIM-1)
Weather check	Minimum altitudes (91.119, EOG-8,
Fuel required (91.23)	MEA
Alternate course of action	MOCA
Delays	MCA.
A04. Preflight Action for Aircraft	MRA
Documents (91.27)	MAA
Airworthiness Certificate (91.29)	Cruising altitudes (91.121)
Registration Certificate (91.27)	Courses to be flown (91.123)
Operating Limitations (91.31)	Altimeter settings (91.81)
Aircraft Inspections (91.165, 91.169)	Special use airspace
Equipment and Systems	restricted areas
equipment required (91.33, 91.90,	positive control areas (91.97)
91.97)	jet advisory areas (91.99)
tests and inspections	BASIC KNOWLEDGE
VOR receiver (91.25)	
altimeter system (91.170)	B01. Physiological Factors (Ch. II-IFH,
Portable electronic devices (91.19)	AIM-1)
A05. Flight Plan (AIM-1)	Physiological altitude effects:
- · · · · · · · · · · · · · · · · · · ·	aerotitis; aerosinusitis; hypoxia (AC
When required (91.97, 91.115)	91–8A)
Information required (91.83)	Hypoxic effects
Alternate airport (91.83)	carbon monoxide (AC 20-32A); al-
when required (EOG-29) minimums	cohol; hyperventilation; drugs
Closing flight plan (91.83)	Sensations of instrument
	flying (AC 60-4):
A06. Compliance With Clearance (91.75,	motion; postural sense; sight
EOG-6, AIM-1)	Spatial disorientation
Communications reports (91.125)	B02. Aerodynamic Factors (Ch. III-IFH
With communications failure	Private Pilot's Handbook of Aeronautical
route procedures (91.127)	\mathbf{K} nowledge)
malfunction reports (91.129)	Forces
Emergency deviation (91.75)	Power/airspeed/vertical speed
detour thunderstorm	Turns
change of altitude (icing or turbu-	forces in a turn
lence)	constant rate turns
Mid-air collision avoidance (VFR EOG-22, 29, 48)	rate/speed/angle of bank coordination
A07. Terminal Area Limitations (AIM-1)	B03. Gyroscopic Instruments and Systems
Terminal control area (91.90)	(Ch. IV-IFH)
Airport traffic area (91.85)	Systems
Airport with tower (91.80)	vacuum
Airport without tower (91.89)	electric
Takeoff and landing minimums (91.116,	Operating principles

Attitude Indicator (EOG-24) preflight and flight limits use Turn Indicator preflight and flight limits use (EOG-18) Directional Indicator preflight and flight limits	Basic maneuvers straight and level climbs and descents turns (EOG-18) unusual attitudes flight patterns B07. Unusual Flight Conditions (AC 90-12)
use	Wake turbulence (AC 90-23A, AIM-1) cause
B04. Magnetic Compass (Ch. IV-IFH)	avoidance
types principles of operation	Thunderstorm encounter (AC 00-24, page 110-AW)
use	Ice accumulation (pages 117, 124-AW)
errors and corrections	structural
B05. Pitot-Static Instruments (Ch. IV-IFH)	carburetor or induction system frost
Pitot static system	Clear air turbulence (AC 00-17)
Altimeter (EOG-10)	B08. Flight Planning Computer Operations
principles of operation use	(Ch. XIII-IFH)
altimeter settings (AIM-1)	Slide rule face
pressure altitude	groundspeed
errors and corrections	time
altitude definitions	distance
indicated	fuel time
pressure	gallons or pounds
true	scale conversions (knots/m.p.h.)
absolute	airspeed conversions
density	calibrated
Vertical Speed Indicator	equivalent
principles of operation use	true
limits and adjustment	altitude conversions pressure/density
Airspeed Indicator	Wind correction face
principles of operation	headings
use	variation
markings (VFR EOG-45)	deviation
airspeed definitions	groundspeed
indicated	B09. Density Altitude Chart (VFR EOG-33)
calibrated	Altimeter setting/pressure alt. tables
equivalent	Pressure alt./density alt.
true	B10. Aircraft Performance (Aircraft Owner's
B06. Attitude Instrument Flying (Ch. V-IFH)	Handbook) (VFR EOG-33, IFR EOG-32, AC 90-14A)
Instruments	Performance Charts
pitch	cruise performance
bank	altitude
power	gross weight
Preflight instrument check	power settings (VFR EOG-38)

fuel flow	precipitation
takeoff distance	dew and frost
climb performance	B13. Stability
best angle	Atmosphere (Ch. 6-AW)
best rate	lapse rates
balked landing	stability determinations
single engine	effects of stability and instability
landing distance	Wind (Ch. 7-AW)
indicated/calibrated airspeed	convection currents
Instrument markings	obstructions to wind flow
Placards	shear
B11. Aircraft Operating Limitations (docu-	clear air turbulence
ment in aircraft) (EOG-21, AC 60-6)	intensity
Weight and balance	B14. Air Masses and Fronts (Ch. 9 & 10-AW)
c.g. or moment limits	Sources
passenger/baggage limits	air mass
fuel distribution	frontogenesis
fuel burn	Classification
Instrument limit markings	air mass
Limiting placards	front
loading limits	Modification
gear and flap operation	Characteristics
maneuvering speed	Associated clouds (Ch. 8-AW)
Charts	B15. IFR Weather Hazards
turbulent air penetration	
maximum safe crosswinds (VFR	Thunderstorms (Ch. 11-AW), AIM 1) structure and formation
EOG-27)	turbulence
B12. Properties of the atmosphere	hail
Composition (Ch. 1-AW)	lightning
Temperature (Ch. 2-AW)	Icing (Ch. 12-AW)
measurements	types
temperatures aloft	conditions for formation
Atmospheric pressure (Ch. 3-AW)	Fog and obstructions to vision
measurements	types
sea level pressure	formation
pressure systems	B16. Weather Observations (Ch. 15-AW)
altimeters	Aviation Weather Reports (SA)
Wind (Ch. 4-AW)	(EOG-5)
circulation	Pilot Weather Reports (UA)
systems	Weather Radar Observations (SD)
local variations	Upper Air Observations
Moisture (Ch. 5-AW)	RAWIN
changes of state	PIBAL
measurements	
relative humidity	B17. Weather Charts (Ch. 16-AW)
dew point	Weather depiction (EOG-15)
condensation, supersaturation, and	Surface weather
sublimation products	Constant pressure
cloud and fog	Radar summary (EOG-17)

	Prognostic	surface and load bearing capacity
	surface (EOG-16)	elevation
	constant pressure	traffic pattern
	significant weather	obstructions
	12-hour upper wind	markings (AIM-1, EOG-26, 28)
B18.	Aviation Weather Forecasts (Ch. 17-	Lighting (AIM-1)
	AW)	rotating beacon
	Terminal (EOG-5)	runway lighting aids
	12-hour (FT1)	boundary
	24-hour (FT2)	approach, REIL, and VASI
	Area (FA) (EOG-5)	centerline
	Winds aloft (FD) (EOG-5)	threshold
	In-flight weather advisories (FL)	Unicom (AIM-3)
	Severe weather	controlled airport
	hurricane advisories (WH)	non-controlled airport
	outlook (AC)	C02. Basic Principles of Navigation Facilities
	forecast (WU)	(Ch. VI-IFH)
	Prognoses	Radio ranges
	surface analysis (AS-2 and FS-1)	VOR, VORTAC
	regional prognosis (FN-1)	homing beacons
R 10	Interpretation of combined weather re-	ILS
D10.	ports and forecasts	Aids
T	· •	marker beacons
B20.	Weather Services (Ch. 14 and 18-AW,	DF
	AIM-1)	radar beacon (AC 00-27)
	National Weather Service	•
	telephone listings (AIM-2)	Co3. Use of Navigation Facilities (Ch. VII-
	pilot/forecaster (Enroute Chart)	IFH)
	FSS	VOR (EOG-7, 14)
	location (AIM-2)	accuracy check (EOG-22, AC 91-18)
	telephone listing (AIM-2)	VOT (AIM-3)
	air/ground frequencies (AIM-3)	VOR receiver checkpoints (AIM-
	Scheduled broadcasts local ATIS	4)
	NAV facilities	orientation
	transcribed weather broadcasts	position
	Unscheduled broadcasts	airway intersection tracking
	SIGMETS	ADF
	AIRMETS	orientation
	1111011111	homing
FACI	LITIES	basic procedures (EOG-23)
	Airport Physical Facilities (AIM-3, 3A,	ILS (Ch. VI-IFH)
001.	Enroute and Approach Charts)	localizer
	Service	glide slope
	fuel	marker beacons
	storage	lighting aids
	repair	DME (Ch. VI-IFH, AC 170-3B)
	oxygen	Transponder (EOG-25, AC 00-27)
	Runways	code
	number and longest	mode

output	Advisories
normal	Radar services
low	Distress assistance
C04. Control Tower Facility (Ch. VIII-IFH,	C07. Use of Communication Facilities
AIM-1, 3, 3A, 4)	Communication phraseology (Ch. IX-
Ground Control	IFH, AIM-1)
clearance delivery (AIM-1)	procedures (EOG-11)
taxi control (AIM-1)	phonetic alphabet
frequencies (AIM-3)	procedural words and phrases (AC
Departure Control	90–39)
radar services (AIM-1)	frequency discipline (AC 90-35)
frequencies (AIM-3)	Airborne equipment (Ch. VII, VIII-
Takeoff and landing control	IFH)
separation (AIM-1)	systems
frequencies (AIM-3)	frequencies (AIM-3, AC 90-11A)
Approach control	Clearances and control sequence (AIM-
radar (AIM-1)	1, Ch. X, XI-IFH, EOG-4)
services	clearance shorthand (Ch. XIV-IFH)
approaches	clearance items (AIM-1)
monitor	C08. Status of Facilities and Airways
non radar (AIM-1)	Airport/Facility Directory (AIM-3)
frequencies (AIM-3)	NOTAMS (AIM-3A)
VHF direction finding (AIM-1)	Restrictions to Enroute Navigation
ATIS (AC 90-22A)	Aids (AIM-4)
use	Special Notices (AIM-4)
frequencies (AIM-3)	Preferred Routes (AIM-3, AC 90-38)
Use of runways (AIM-1)	SID's and STARS (AIM-3)
Light signals (91.77, AIM-1)	Substitute Route Structure (AIM-3)
C05. Flight Service Station facility	Area Navigation Routes (AIM-3)
•	Charts Enroute
Weather Services (AIM-1)	Area
briefing (AIM-1)	Alea
telephone listing (AIM-2)	AIRSPACE AND AIRWAY ROUTE SYSTEM
Flight Plan Service (AIM-1)	
file and close	Do1. Controlled Airspace (AIM-1, Enroute
enroute reporting communication frequencies (AIM-3,	and Area Charts)
Enroute Chart)	Airport Traffic Area
Airport Advisory Service	Control Zone
airport information (AIM-1)	Control Area
frequencies (AIM-3)	Continental Control Area
VHF direction finding (DF) (AIM-1)	Positive Control Area
	D02. Special Use Airspace (AIM III, En-
C06. Air Route Traffic Control Center	route and Area Charts)
(ARTCC) (Ch. XI-IFH)	Prohibited Area
Traffic control	Restricted Area and Climb Corridor
geographic area (enroute chart)	Warning Area
communication frequencies (Legend-	Intensive Student Jet Training Area
Enroute Chart)	Alert Area

D03.	ADIZ SCATANA	E01. Pre-Takeoff Procedures (Ch. XII-IF) Flight Plan (AIM-1) ATIS (AIM-1)				
D04.	Victor (VOR) Airways (Low Altitude Enroute and Area Charts) Limits width	Route Clearance (AIM-1) pre-taxi clearance delivery other clearance delivery Taxi (AIM-1)				
	base	E02. Takeoff and Departure Procedures				
		(AIM-1, Ch. XII-IFH)				
	top Radials and bearings	Takeoff				
	Route identification	Departure				
	airway	non radar				
	military route	radar vector				
	substitute route	SID's (SID Booklet)				
	unusable route	Altitude control				
	Altitude limits (EOG-8)	climb				
	MOCA	crossing				
	MEA	E03. Enroute Procedures (Ch. XII-IFH				
	MRA	AIM-1)				
	MCA	Normal Navigation				
	MAA	reporting				
	Compulsory and noncompulsory re-	handoffs				
	porting points	Radar Environment				
	facilities	reporting				
	VOR/VORTAC	handoffs				
	NDB	Altitude				
	intermediate fixes	climb or descent				
	VOR bearing intersections	VFR on top				
	DME/VOR radial	cruise				
	Segment limits	maintain				
	mileage breakdown	Delays				
	minimum altitude change	clearance limit				
	VOR changeover points	holding				
	altimeter setting boundary	procedures (AIM-1)				
	time zone boundary	fixes (Enroute Chart)				
D05.	Area Navigation (AC 90-45, EOG-31)	E04. Arrival (Ch. XII-IFH, AIM-1)				
	Area Navigation Routes (RNAV)	STARS (AC 90-41)				
	Waypoints	Radar vectors				
	Ground facilities	Holding (AC 90–46)				
	Airborne equipment					
	types	E05. Approaches (AC 90-1A or Appendix				
	presentation	IFH, Approach Charts)				
	course line	VOR				
	distance	VOR/DME				
	vertical	NDB				
Dog	Direct Flights (AIM-1)	ILS				
	- , ,	localizer				
ATC	OPERATIONS AND PROCEDURES	back course				

Radar (AIM-1, EOG-27)
PAR
ASR
Contact and Visual
Missed Approaches

E06. V/STOL Operations (when available)

E07. Emergencies (AIM-1, EOG-2)

Lost
transponder code
triangle
emergency frequency
chaff (AC 90-36)
Forced landing or crash
beacon (AC 91-19)
air sea rescue (AIM-1)
Difficulty with communications

Malfunction of equipment
aircraft accessory
communication equipment
Part 430, Rules Pertaining to Aircraft
Accidents, Incidents, Overdue Aircraft
and Safety Investigations
immediate notification
manner of notification
reports

F01. Aeronautical Terms (FAR 1 and AIM-1, Glossary)

Note.—Applicants for original issuance of a Ground Instructor Certificate with an instrument rating should refer to the Ground Instructor Examination Guide—Basic—Advanced for a Study Outline and sample test on Fundamentals of Instructing.

Sample Test

The following items are typical of those in the official FAA written test. Answers and explanations or references are given on pages 00 and 00.

Note: The sample items, answers, and analyses are based upon procedures and regulations in effect at the time of preparation of this publication. Regulatory and procedural changes subsequent to the date of publication should be checked for their effect on the applicable item.

- 1. An instrument rated pilot meets the recency of experience requirements for daylight instrument flight. Which statement is correct regarding additional recency of experience requirements for this pilot to carry passengers on an instrument flight at night?
 - 1—Within the preceding 6 months, the pilot must have made at least 3 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in an aircraft to be flown on the instrument flight.

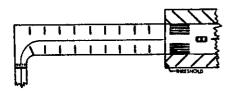
- 2—Within the preceding 90 days, the pilot is required only to have made 5 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in any aircraft.
- 3—Within the preceding 6 months, the pilot must have made at least 5 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in an aircraft of the same category, class, and type as the aircraft to be flown.
- 4—Within the preceding 90 days the pilot is required only to have made 3 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in any aircraft.
- 2. Normally, a VOR marked (T) on the enroute charts should not be used for navigation when flying at altitudes above 12,000 ft. An aircraft at this altitude may receive undependable navigation signals because

- 1—transmitter signal strength is under 25 watts.
- 2-course azimuth is not accurate above 12,000 feet.
- 3—atmosphere conditions may affect the signals.
- 4-signals from another VOR may interfere.
- 3. Students should be taught that a pilot departing an airport in uncontrolled airspace under instrument weather conditions
 - 1—has no assurance of separation from other traffic.
 - 2-must stay clear of clouds until he has received an IFR clearance.
 - 3-must file a flight plan before takeoff.
 - 4—will be controlled by Air Route Traffic Control.
- 4. Which is a true statement regarding the indications of the needle and ball of a properly calibrated 2-minute turn and slip indicator?
 - 1—The turn needle gives a direct indication of the aircraft's angle of bank.
 - 2—The position of the ball does not affect the accuracy of the turn needle.
 - 3—A one-needle width deflection indicates a turn of 3° per second only if the ball is centered.
 - 4—The rate of turn is too great for the angle of bank when the ball is on the low side of the turn.
- 5. Unreliable course guidance information may be indicated on a Nav/Com system during which of the following situations?
 - 1-When using the Nav/Com transmitter.
 - 2—During reception of voice transmissions.
 - 3—When approaching a radio beacon on an LOC back course approach.
 - 4—When making an ILS front course approach with the OBS set at some value other than the front course inbound bearing.
- 6. When using the magnetic compass to establish and maintain a heading, the pilot should remember that, due to the normal

- characteristics of a compass, it will usually indicate a turn toward
 - 1—south when the airplane is accelerating on a heading of east.
 - 2—north when entering a right turn from a heading of east.
 - 3—east when accelerating on a heading of north.
 - 4—west when entering a right turn from a heading of north.
- 7. Your students should know that the primary purpose of the elevator trim tab is to
 - 1-keep the elevator streamlined.
 - 2-relieve elevator control pressures.
 - 3—reduce control pressures while changing the aircraft pitch attitude.
 - 4-increase longitudinal stability.
- 8. An instrument student should know that on any simulated instrument flight outside the vicinity of an airport, the pilot-in-command must familiarize himself with all available information concerning that flight. Which of the following must the pilot accomplish?
 - A. Check available weather reports and forecasts.
 - B. File a flight plan.
 - C. Determine fuel requirements.
 - Determine runway lengths and takeoff and landing distances required at airports of intended use.
 - 1-A, B, and C
 - 2-A and C only
 - 3-A, C, and D
 - 4-B and D only
 - 9. Pressure altitude is obtained by
 - 1—correcting terrain clearance altitude for temperature.
 - 2—setting the altimeter to standard sea level pressure.
 - 3—setting the altimeter to a station pressure in inches of mercury which has been corrected to sea level.
 - 4—correcting the altimeter for temperature deviation from standard.

10. A pilot tunes his ADF receiver to a radio beacon. Refer to the following illustration:

VAR—10° E. DEV—5° W. TAS-170 knots Wind-360°/30 (true)


The aircraft is located on a magnetic bearing from the station of

- 1-250°.
- 2-255°.
- 3-260°.
- 4---075°.
- 11. Abrupt control movement when changing aircraft attitude
 - 1-helps to eliminate instrument lag.
 - 2—results in erroneous indications on the attitude indicator.
 - 3—results in less error in stabilizing the aircraft.
 - 4—may result in overcontrolling and unnecessary stress on the aircraft.
- 12. If a student is making a timed turn to the right and the turn needle indicates the correct rate of turn, but the ball is to the left of center, the student should
 - 1—apply left rudder pressure and maintain the same degree of bank.
 - 2—decrease right rudder pressure if holding right rudder or apply left rudder and steepen the bank.
 - 3—decrease right rudder pressure and shallow the bank.
 - 4—use same rudder pressure and steepen the bank.
- 13. Choose all the statements which are true when the gross weight of the airplane is increased.
 - A. Stalling speed will decrease.

- B. Takeoff distance will increase.
- C. Recommended approach speed will remain the same.
- D. Maximum rate of climb will decrease.
- E. Horizontal stabilizer will carry a greater percent of the total weight.
 - 1-A, B, and D
 - 2-B and E
 - 3-C, D, and E
 - 4-B and D
- 14. If you are cleared to a fix short of your destination airport and not given an "expect further clearance time," normally you may expect to receive further clearance
 - 1—at least 3 minutes before your ETA at the fix.
 - 2-at least 10 minutes before your ETA at
 - 3—when you notify ATC that you are at the clearance limit.
 - 4-before reaching the fix.
- 15. In the Northern Hemisphere above the friction layer, the air flows
 - 1—at right angles to the isobars from a high pressure area to a low pressure area.
 - 2—counterclockwise around a low pressure area, clockwise around a high pressure area, and parallel to the isobars.
 - 3—clockwise around a low pressure area, counterclockwise around a high pressure area, and parallel to the isobars.
 - 4—from a high pressure area to a low pressure area at 45° to the isobars.
- 16. Choose the true statements regarding the formation of frost on an airplane's wings.
 - A. Frost can form in flight when an airplane descends from a zone of subzero temperatures to a zone of above freezing temperatures and high humidity.
 - B. Frost occurs when dew forms on the wings and the surrounding air is below freezing.
 - C. Frost cannot form on the wings of an airplane unless the temperature of the air surrounding the wings is at least 2° below freezing.

- D. The surface of an airplane's wings must be below freezing before frost will form on the wings.
 - 1-A and C
 - 2-A and D
 - 3-B and C
 - 4-B and D
- 17. Which statement regarding the stability of the air is true?
 - 1—If very stable moist air is forced to ascend a mountain slope, clouds will be layerlike with little vertical development.
 - 2—If air is subsiding (sinking), the heat of compression causes the air to become unstable and usually sets off considerable vertical development of clouds.
 - 3—When an area of poor visibility due to smoke and haze persists, it is usually due to the air being saturated and unstable.
 - 4—When an unsaturated air mass is heated from below, the air tends to become more stable.

18.

In the figure above, the area to the left of the threshold is

- 1—an "over-run" with sufficient strength for all aircraft operations.
- 2—an abandoned runway area which may not be used for any aircraft operations.
- 3—a "deceptive area" with a marked centerline usable only for taxiing.
- 4—a stabilized blast-pad, no part of which may be used for taxiing, takeoff, or landing.

19. Students should understand that during a level turn, the stalling speed and load factor of an airplane increase as the bank increases. Which statement regarding load factor and stalling speed is true on an airplane with a V₈₀ of 65 knots? (See Appendix, Figure 2.)

- 1—The lift required for a 60° bank is twice that required in straight and level flight.
- 2—The stalling speed when in a 60° bank is twice as much as when in straight-andlevel flight.
- 3—After reaching a 60° bank the load factor and stalling speed increase at the same rate.
- 4—An airplane in normal category at full gross weight would not exceed the limit load (3.8) unless it reached a bank of 85°.
- 20. According to Figure 3, which statements concerning power and drag are true?
 - A. Maximum endurance is obtained at an airspeed of approximately 120 knots.
 - B. Minimum drag occurs at an airspeed of 160 knots, which is the best speed for maximum endurance.
 - C. L/D max occurs at the airspeed which also gives the least total drag.
 - D. Total drag always increases with an increase in airspeed.
 - 1-A and C only
 - 2-A, B, and C
 - 3-B, C, and D
 - 4-B and D only

Test items 21 through 40 are based on the planning and execution of an IFR training flight, covering some elements of preflight and inflight procedures.

Aircraft Data and Flight Conditions

This flight is assumed to be made in a light twin-engine aircraft typical of those used in general aviation. Aircraft data will be given as needed for particular test items. The flight is from Denver Stapleton International Airport to Kansas City Municipal Airport. The flight time analysis found in the Appendix (Figure 1), contains information to be used in the planning of this flight. It may be removed from the booklet and used for your calculations. The Appendix also includes data for use in solving various test items.

ROUTE OF FLIGHT: See partially completed flight plan below.

FEDERAL AVIATION AGENCY FLIGHT PLAN					Form Approved. Budget Bureau No. 04-R072.3				
						1. TYPE OF FI	LIGHT FLAN	2. AIRCHAFT IDENT	TRICATION'
ļ						FVF2	VFR	N 1234	P
<u> </u>				WE AIRSPEED		XX IFR	DVFR	PARTURE TIME	7. INITIAL CRUISING
J. AIRCRAFT	TYPE/SPECIAL E	SOLLWENS TA	4. 18	ME WIRSLEED	a. POINT	DF DEPARTURE	PROPOSED (Z		ALTITUDE
AS	ASTRO/A 170		DEN		1930	acioni (2)	9,000		
8. ROUTE OF	FLIGHT	 -							
Rad	ar Vecto	or Byers	3 V4 MK(
#. DESTINATION (Name of airport and city) 10. REMARKS									
E .	sas City sas City								
	TIME EN ROUTE		DOARD	13. ALTERNATI	AIRPORT(S)		14	. PILOT'S NAME	
Hours	MINUTES	HOURS	MINUTES	SLN					
15. PILOT'S ADDRESS AND TELEPHONE NO. OR AIRCRAFT HOME BASE			16. NO. OF PERSONS ABOARD	17. COLOR	OF AIRCRAFT	18. FLIGHT WATCH STATIONS			
CLOSI	E FLIGHT	PLAN U	ON ARR	IVAL		SPECIAL EQ A — DMI S — DMI D — DMI	& 4076 Code	transponder T unsponder U	DAE & transponder—na codo 64 Codo transponder 4076 Code transponder Transponder—na cado

FAA Form 7233--- 1 (4-64) POINTRIY FAA 319

0052-027-0000

- 21. According to the weather depiction chart (Figure 4),
 - 1—the lowest ceiling along the proposed route of flight is at Kansas City (MKC).
 - 2-VFR conditions exist for more than half of the route.
 - 3-stations between SLN and MKC have scattered clouds.
 - 4-VFR conditions exist in Kansas south of Salina (SLN).
- 22. After checking the area forecasts (Figures 5 and 6) and the 12-hour upper wind prog (Figure 7), you determine that during the proposed flight you
 - will encounter moderate icing in eastern Kansas.
 - 2—are not likely to encounter icing conditions.
 - 3—are likely to encounter moderate CAT in Colorado.
 - 4—are likely to encounter moderate turbulence in northwest Kansas.

- 23. Which statement is a correct interpretation of the SA report (Figure 8)?
 - 1—Denver (DEN) has scattered clouds at 1,700 feet.
 - 2—Topeka (TOP) does not have a ceiling, but the visibility is 2 miles with very light rain.
 - 3—Wichita (ICT) has a temperature of 34° F.
 - 4-Kansas City (MKC) has a wind from 140° at 7 knots.
- 24. From the Power setting table and Fuel consumption chart (Figures 9 and 10), determine the power setting that will give the best fuel economy at 65%. (Pressure altitude of 9,000 feet—air induction temperature 0° C.)
 - 1—2100 r.p.m. 22.4" manifold pressure.
 - 2-2200 r.p.m. 21.13" manifold pressure.
 - 3-2300 r.p.m. 20.6" manifold pressure.
 - 4—Any of the above will give 65% power and have the same fuel burn.

25. If the left engine fails after you start the climb, what rate of climb should be obtainable according to Figure 11?

1—20' per minute 2—0' per minute 3—50' per minute 4—200' per minute

(Use gross weight of 5,200 lbs.-standard altitude of 6,000 feet-IAS of 97 m.p.h. or 84 knots.)

26. At a standard altitude of 9,000 feet, 65% power should produce a true airspeed of (Figure 12)

1-174 knots.

2-178 knots.

3-185 knots.

4-200 knots.

27. Determine the density altitude for Stapleton International Airport from the Pressure altitude density chart (Figure 13).

(Obtain temperature and altimeter setting from the SA 1900Z report, Figure 3—elevation of Stapleton is 5,330 feet.)

1-5,125 feet.

2-6,625 feet.

3-6,300 feet.

4-5,525 feet.

28. If you decide to use a true airspeed of 175 knots at a pressure altitude of 9,000 feet and a temperature of 6° C., you would need an indicated airspeed of (see airspeed correction table below)

1-165 knots.

2-148 knots.

3-152 knots.

4-160 knots.

Airspeed Correction Table Flaps-0

IAS (knots)	CAS (knots
140	138
150	14 8
160	158

29. The computed flight time from takeoff to Kansas City Municipal Airport is

1-2:41.

2-2:46.

3-2:36.

4-2:51.

30. The fuel required for this IFR flight is approximately

1-520 lbs.

2-643 lbs.

3-553 lbs.

4-655 lbs.

31. Determine the c.g. in inches aft of datum with a loading as shown below.

	Weight	Arm	Moment
	(lbs.)	(in.)	(lbln.)
Empty weight (includes 4 gal. unusable fuel)	3,147		283,746
Oll	45	55.0	2,475
Pilot & co-pilot			
seat	340	89.0	30,260
Middle seats	410	126.0	51,660
Rear seats	345	157.0	54,165
Fuel (4 tanks)	720	113.0	
Baggage (front) _	113	10.0	1,180
Baggage (rear)	80	183.0	14,640
	5,200 lbs.		

1 - 91.5

2 - 90.2

3 - 99.9

4-96.9

32. Assume that after takeoff at Stapleton, you lost your VOR navigation receivers and you elect to return to Stapleton. You are cleared for an NDB (ADF) approach to runway 26L (Figure 14). You turn outbound from the LOM on a heading of 077° and the ADF needle indicates 180° on roll out, but deflects to the left (clockwise) while you maintain a magnetic heading of 077, a correct procedure is to

- 1—turn right 20° and fly a magnetic heading of 097° until the ADF needle deflects 20° to the left. At that time you are back on course and should allow for a wind from your right.
- 2—turn left 20° and fly a magnetic heading of 057° until the ADF needle shows a deflection of 20° to the right. Then, turn right to 072° and if the wind correction you made was satisfactory, the ADF needle will remain on 180°.
- 3-turn right 20° and hold that heading until the ADF needle indicates 200°,

- then turn to a heading of 082° to allow a 5° correction for the wind.
- 4—turn left 20 degrees to 057° and fly until the ADF needle indicates 200°, then turn right to a heading of 072° to allow a 5° correction for wind drift.
- 33. What is a correct sequence for tuning the DME on this flight from DEN to GLD? (See enroute chart, Figure 15.)
 - 1—Set DME on 110.3 (Stapleton) until reaching Byers; tune to TXC (112.9) until about 36.5 miles from GLD; then tune to GLD.
 - 2—Before takeoff, tune to DEN (116.3); when at TXC tune to GLD.
 - 3—Tune the DME to the same facility as you tune your No. 1 navigation receiver, and as soon as you change your navigation receiver to another facility, change the DME to that facility.
 - 4—Tune your DME to the navigation facility you are approaching unless it is over 100 miles between facilities.

* * * * * * *

After takeoff, Stapleton tower instructs you to contact Departure Control on 124.8. You contact Departure Control and they confirm radar contact and vector you to intercept V4. You are also instructed to report reaching 9,000. You report reaching 9,000. Upon intercepting V4, Departure Control instructs you to contact Denver Center on 119.8.

* * * * * * * *

- 34. The recommended phraseology for making contact with Denver Center is
 - 1—Denver Center—this is ASTRO 1234P 40 miles west of Thurman—9,000— Thurman at 2000Z—MKC—over.
 - 2—Denver Center—ASTRO 1234P—Thurman 2000Z—9,000—MKC—over.
 - 3—Denver Center—ASTRO 34P—MKC—over.
 - 4—Denver Center—ASTRO 1234P—9,000—over.
- 35. Assume that about 10 minutes after passing Thurman (TXC), you are told to contact Denver Center on 142.5. As you attempt

to change your communication receiver to this frequency, you realize it only goes to 129.9. You are unable to reestablish contact with Denver Center on 119.8. In this situation, you should attempt to contact

- 1—Denver Center on any other frequency listed on the enroute chart for Denver Center.
- 2—Goodland Radio on any standard FSS frequency or 122.3.
- 3-any ATC facility on 121.5.
- 4—Departure Control on 126.9.
- 36. The communication box at Goodland (Figure 15), indicates that
 - 1-all standard frequencies except 122.3 are available.
 - 2-only 122.3 is available.
 - 3—all standard frequencies and also 122.3 are available.
 - 4—all standard frequencies are available, but 122.3 is the best frequency to use.
- 37. At Topeka, you receive the following amended clearance: ASTRO 1234P CLEARED TO WOOD INTERSECTION V4N—DESCEND TO AND MAINTAIN 7000—EXPECT FURTHER CLEARANCE AT 2210Z. Upon arrival at Wood Intersection (still in radar environment), you should (area chart, Figure 16)
 - 1—call Kansas City Center and tell them you have arrived at Wood Intersection.
 - 2-go into a standard holding pattern with a direct entry to the pattern.
 - 3—hold at Wood Intersection until 2210, and then, if you have not received further clearance, continue to MKC.
 - 4—make a direct entry into a nonstandard holding pattern.
- 38. Before reaching Wood Intersection, you are instructed to contact Kansas City Approach Control. After contact, you are given a radar vector for an ILS approach to runway 18. While on a heading of 150°, you are cleared for an ILS approach. In this situation, you should

- 1—turn onto the localizer upon interception and make the approach as shown on the approach plate.
- 2—continue on a heading of 150° through the localizer as Approach Control may want to bring you back from the other side for spacing.
- 3—call Approach Control when you intercept the localizer for permission to track inbound.
- 4—turn onto the localizer upon interception and immediately call Kansas City Tower.
- 39. Which statement is correct regarding minimums for this approach (Figure 17)?
 - 1—Since this is a straight-in approach, the MDA is 400 ft.
 - 2-The MDA is 1,160 ft.
 - 3-The DH is 1,158 ft.
 - 4—Since this plate does not have the new format, a ceiling of 400 ft. and a visibility of 1 mile are required.

- 40. If you had to go to your alternate (Salina) and your DME was inoperative, which statement is true regarding your approach (Figure 18)?
 - 1—Although the wind is out of the south, you would have a lower MDA by circling to land from an ILS approach to runway 35 than by making a VOR runway 17 straight-in approach.
 - 2—Should you be cleared for a VOR approach to runway 17, you would have to make this approach to land at Salina.
 - 3—With a visibility of ¾ mile, you could make either a VOR approach to runway 17 or an ILS approach to runway 35, even though the control tower was not in operation.
 - 4—If you were cleared for an approach while holding at the Salina VORTAC, you could make a straight-in approach.

Analysis of Answers to Sample Test Items

Item Answer

- To be current, a pilot must have made 5 takeoffs and 5 landings to a full stop in the category, class, and type aircraft he is to fly. He can meet the requirements of FAR 61.47 for carrying passengers at night by making the 5 takeoffs and landings in any aircraft.
- 2 4 See Airman's Information Manual, Part 1, "Air Navigation Radio Aids," for normal usable altitudes and further information.
- 3 1 ATC does not provide aircraft separation or control traffic except in controlled airspace.
- 4 2 The turn needle is independent of the "ball." If the turn needle is properly calibrated, it shows the correct rate of turn regardless of the position of the ball. (See IFR Exam-O-Gram No. 18.)

Item Answer

- 5 1 Since many NavCom transceivers utilize part of the receiver circuitry when the transmitter is operating, unreliable CDI indication may be obtained while transmitting.
- 6 4 For information on compass errors, see page 49 of the *Instrument Flying Handbook* (AC 61-27A).
- 7 2 The elevator trim should be used to relieve elevator control pressures. A change of power or airspeed requires a change of elevator trim. (See Instrument Flying Handbook, page 66.)
- 8 3 A. FAR Part 91.5.
 - B. There is no requirement to file either a VFR or IFR flight plan in this case, but it is considered a good practice.
 - C. FAR Part 91.5.
 - D. FAR Part 91.5. This is included in the phrase, "familiarize himself

Item Answer

with all available information concerning that flight." At the time of this publication, there is a Notice of Proposed Rule Making, proposing the amending of 91.5 to make this clear.

- When the altimeter is set to 29.92 9 (standard pressure), the pressure altitude can be read directly from the altimeter, assuming no altimeter error.
- 10 To determine magnetic bearing, use magnetic heading. (In this problem variation and wind are not needed.)

Compass headi Dev. Magnetic headi	C	320° 5° W. 315°
Relative bearing	115°	
Magnetic heading	315°	
Magnetic bearing to station	430°-360°	or 70°
	-180° -250°	+180° 250°
bearing from station	200	200

- 11 4 An abrupt movement of the controls not only leads to over-controlling, but may put undue stress on the aircraft.
- The ball indicates a skidding turn. 12 The pilot is either holding right rudder, or the airplane is out of trim.
- A. The greater the gross weight, the 13 higher the stalling speed.
 - B. Correct as stated.
 - C. Since the airplane will stall at a higher airspeed, the approach speed should be increased.
 - D. Correct as stated.
 - E. The amount of load the stabilizer carries depends on the location of the center of gravity.
- See AIM 1, "ATC Clearances/Sepa-14 rations-Clearance Items."

- For further information on air flow, 15 see Aviation Weather (AC 00-6).
- 16 A. Correct as stated (see Aviation 2 Weather, page 117).
 - B. Frost does not form from dew, but directly from water vapor.
 - C. If the wings are cold, frost can occur as stated in A.
 - D. Correct as stated.
- 17 1 For further information on stability of air masses, see Aviation Weather, page 35.
- For further information on runways, 18 see Part 1 of AIM and IFR Exam-O-Gram No. 26.
- 19 The load factor for a 60° bank is 2, which requires twice the lift required for a load factor of 1.
- A. Maximum endurance is attained 20 at an airspeed that requires minimum power.
 - B. For propeller airplanes, minimum drag and minimum power do not occur at the same airspeed.
 - C. Correct as stated.
 - D. From the drag chart, notice that there are two speeds that have the same total drag.
- 21 Areas having IFR weather are enclosed by a solid line. South of SLN several stations are shown in Kansas inside an area enclosed by a scalloped This is an area of marginal VFR weather. (See IFR Exam-O-Gram No. 15.)
- 22 Area forecast (Figure 5), indicates a freezing level of 7,000 in Nebraska and Iowa, sloping to 10,000 in SW Clouds in Colorado are Kansas. above your proposed altitude. Upper wind prog (Figure 7), indicates temperatures of +6° C. in Colorado and Kansas, and +1 C. at Kansas City; all above freezing.
- 23 Denver has a broken ceiling at 17,000; Topeka has a ceiling of 400 feet; the temperature at Wichita is 40° F.

Item Answer

- 24 1 Power settings with various r.p.m. and manifold pressure combinations are listed in Figure 13 for 65% rated hp.

 The lowest r.p.m. results in the least fuel consumption as illustrated by Part throttle fuel consumption chart, Figure 10.
- 25 1 With a gross weight of 5,200 lbs., the Single engine climb rate chart (Figure 11), indicates an absolute ceiling of 6,200 ft. The airplane is capable of a 20 ft./min. climb at 6,000 ft.
- 26 1 Figure 12 indicates that at 9,000 feet, the true airspeed should be 200 m.p.h. or 174 knots.
- 27 3 Elevation _____ 5,330 ft.

 Correction for
 non-standard
 (30.06) _____ -129 ft.

 Pressure altitude 5,201 ft.

 Density altitude
 from chart
 (PA 5,201
 @ 58° F.) ____ 6,300 ft. (approx.)
- 28 3 The CAS is 150 knots. In this airspeed range, the IAS is 2 knots greater, or 152.
- 29 1 Avg. wind (true)
 DEN to SLN=230° @ 18 knots
 SLN to MKC=245° @ 19 knots
 If one desires to change the true wind to magnetic, subtract average easterly variation.

Avg. wind (magnetic)
DEN to SLN=219° @ 18 knots
SLN to MKC=236° @ 19 knots
Avg. mag. course TXC to SLN=088°

From	To	GS	Time
Byers	\mathbf{TXC}	187	:13.8
TXC	SLN	186	1:26.0
SLN	MKC	192	:44.8
MKC	SLN	163	:53

30 4 Subtracting 12 minutes from the total time of 2:41, gives 2:29. Using 143 lb./hr. fuel flow, the fuel burn to MKC should be 355+50 or 405 lbs.

Item Answer

It should take approximately 60 min. to go to the alternate, resulting in a fuel burn of 143 lbs. The reserve requirement is 45 minutes or a fuel burn of 107 lbs.

- 31 3 The moment for the fuel is 720×113 or 81,360; a total moment of 519,436. Dividing 5,200 into this, gives a c.g. of 99.9" aft of datum.
- 32 2 TXC is not a VORTAC, therefore, has no DME signal.
- 33 4 See IFR Exam-O-Gram No. 23 for ADF procedures.
- 34 4 Since you are in radar contact, no position report is required; however, the center will want you to verify your altitude.
- 35 2 Goodland Radio has all standard FSS frequencies and an additional frequency of 122.3. If you cannot reestablish contact with Denver Center on 119.8, you should try to contact the nearest FSS which is Goodland Radio.
- 36 3 Explained above.
- 4 It is not necessary to make position reports when in radar environment unless requested. Both the enroute chart and area chart show a holding pattern with left turns which is non-standard. See AIM 1, "ATC Clearances," and "Enroute-IFR" for more information.
- 38 1 When you are cleared for the approach, you are expected to make necessary turns to make the approach. However, you do not call the tower until so instructed by Approach Control.
- 39 3 Since the AL Chart is not the new format, for a straight-in approach add the ceiling of 400 feet to the field elevation. This is a DH of 758 ft.
- 40 1 An ILS RWY 35 circling approach has an MDA of 1700, while the VOR straight-in approach is 1740. If you

were cleared for a VOR approach and did not think you could safely make it, you could request the ILS approach. However, should Approach Control have a large amount of traffic,

unless you had more than a loss of DME, they might delay your clearance and put you in a holding pattern until they could work you in for the ILS approach.

Appendix

This section contains supplementary data for use with the sample test.

FLIGHT TIME ANALYSIS

CHECK	POINTS	ROUTE	Mag	AIRSPE	ED-RYS.	WINDS ALOFT DIRECTION	DRIFT		DISTANCE	π	ME	CONSU	UEL METION GALS.	Misc.
FROM	το	ALT./FLT. LEVEL	Avg	OR MACH NO	TAS	VELOCITY TEMPERATURE	ANGLE	SPEED N.M.	N.M.	1,BG	TOTAL	LEG	TOTAL	
Stapletor Airport	Byers	Radar Vector								12.0	12	50 *	50	*Includes tax and warm up.
Byers	TXC	V ¹ 4	083		175	**								
TXC	SLN	n			"			<u> </u>						
SIN	MKC	17	072°		11									
MIKC	K.C. Muni									4.8				
					<u> </u>			<u> </u>						
	<u> </u>													
			<u> </u>											
	<u> </u>													
					<u> </u>									
				<u> </u>		<u> </u>								
ALTERNA	TE DATA												FUEL SUMA	(ARY
KC Muni	MKC									7.0	7.0		TIME	LBS./GALS.
MIKC	SLC				172	Mag. Wind 220°≐ll kts						ENBOUTE		
												ALTERNATE		
** Ohtain	wind aloft	from 12 hr unn	er wind	prog. 1	Figure :	8. Use average	of DE	EN and	HLC =	zinde fo	r	RESERVE		
flight to	Salina (S	from 12 hr. upp LN), use averag f 143 lb/hr unles	e of HL	C and M	IKC wi	nds for flight fr	om Sal	ina to I	Cansas C	city.	•	EXTRA		

TOTAL

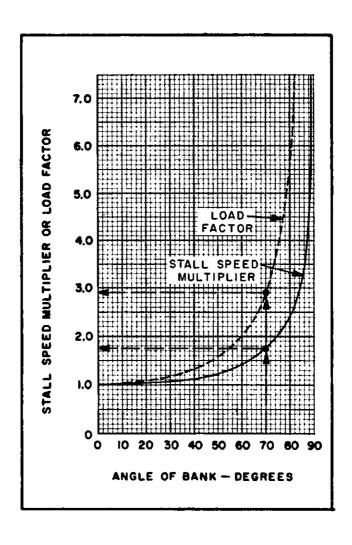
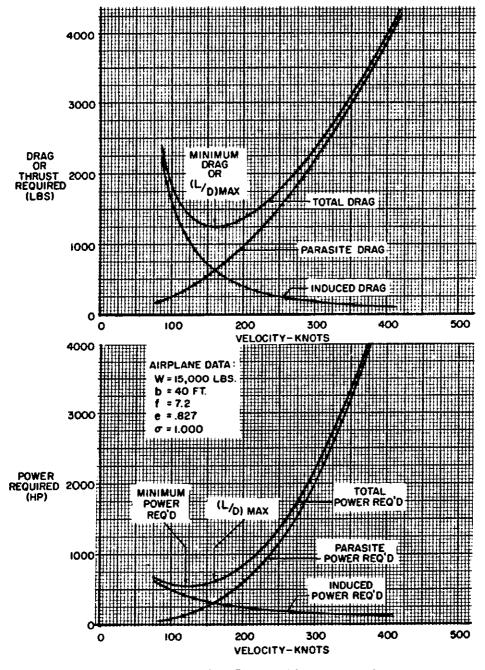



FIGURE 2. Stall speed multiplier or load factor.

Airplane Thrust and Power Required

FIGURE 3. Airplane thrust and power required.

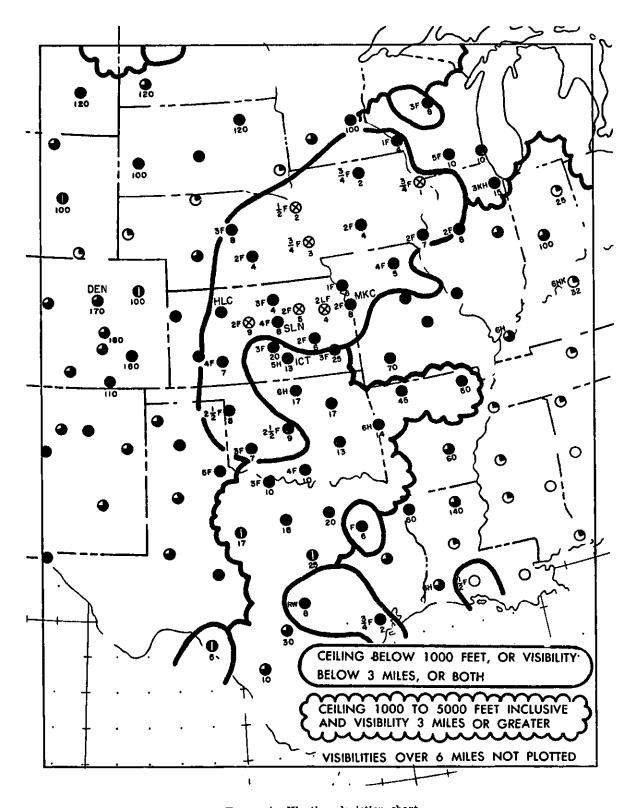


FIGURE 4. Weather depiction chart.

FA MKC 171845Z 19Z WED-Ø7Z THU

NEB EXCP PNHDL IA KANS MO

HGTS ASL UNLESS NOTED.

SYNOPSIS. WDSPRD LOW ST AND FOG THU MOST OF FCST AREA WITH LTL IPVMT EXPCD THRU PD.

CLDS AND WX...

MOST OF IA NRN TWO THIRDS OF MO CNTRL AND ERN KANS PTNS OF SCNTRL AND ERN NEB C2-501-3F OCNL C2X1/2FL-- SERN HLF IA NWRN MO AND NERN KANS. SLO IPVMT EXTRM WRN EDGES BY ØØZ HWVR CONDS SPRDG SLOLY SWD RMNDR MO.

EXTRM S CNTRL AND SERN KANS SRN THIRD AND E CONTRL MO C15-350V03-5FK OR HK LWRG C8-1202-5F WITH OCNL L-- BY ØLZ.

WRN KANS C12ØD3ØØD7 WITH -X1-3GF SWRN HLF CHC C6-8D1F AND BCMG C4-6D3F BY ØLZ SWRN PTNS.

N CNTRL NEB. 1ØØD3ØØ-D WITH CHC 12D25DC1ØØD.

ICG. LGT TO OCNL MOT MXD ICGICIP. FRZLVL NEB AND IA SLPG TO $7\rlap/p-1\rlap/p/p$ EXTRM SWRN KANS.

TURBC. LGT TO LCLLY MDT TURBC BLO 70 CNTRL NEB NWRN KANS.

OTLK Ø7Z-19Z THU. CONDS ERN NEB N CNTRL KANS LFTG 18-300005F BY 14Z AND 4008007 BY 19Z LTLCG ELSW.

FA DEN 181845 192 WED-Ø72 THU

COLO WYO NEB PNHDL

HGTS ASL UNLESS NOTED

SNYS. HI PRES W OF CONTDVD. WK TROF OF LO PRES ERN PRNS OF AREA DRFTG EWD

CLDS AND WX. OVR AREA. 170-200000300 LCLY A FEW AREAS 100-120000 OVR EXTRM NWRN WYO WITH ISOLD SNW SHWRS. OCNL MTN OBSCMT VCNTY SNW SHWRS

ICG. NONE OF CONSEQUENCE. FRZLVL 9Ø-1ØØ NRN WYO TO 11Ø-12Ø COLO

TURBC. LGT TO LCLY MOT W OF CONTDVD COLO. ELSW OVER AND NEAR MTNS MDT TURBC LCLY SVR WITH UDDF ALG ERN SLPS OF MTNS. MTN WAVE LKLY E OF CONTDVD WYO AND NRN COLO 220-390 WITH LGT TO LCLY MDT CAT

OTLK 97Z-19Z THU. NO SGFNT CHGS

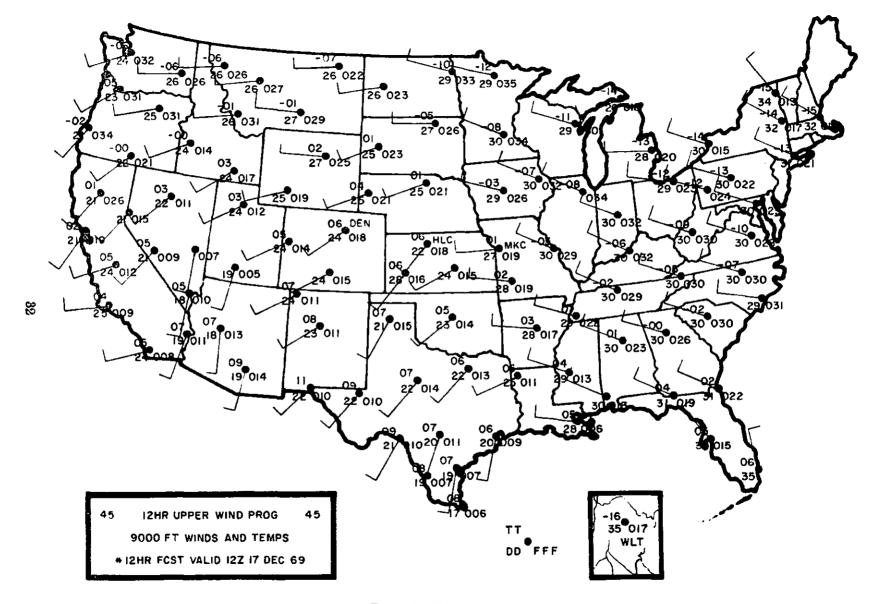


FIGURE 7. 12-hour upper wind prog.

```
DEN E1700250060 172/58/13/0000/006/ACSL ALQDS
→DEN 12/8 ASE OA 12/9 ASE XX
GLD 1\u00e400015+ 168/\u00e48/30/3010/000
HLC 10-\u00e47 195/\u00e40/32/2206/000\u00e4/FOG ALQDS
RSL W9X2F 209/38/33/1912G21/008/ PRESFR
SLN E8\u00e4\u00e4\u00e4F 207/39/3\u00e4/181\u00e4/012→\u00e3\u00e4\u00e4\u00e4F XX
MHK W5X2F 32/29/1608/018/\u00e4\u00e46 PRESFR
TOP S W\u00e4X2L-\u00e4F 2\u00e4\u00e4/30/1\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u0
```

Figure 8. Aviation weather report.

Power Setting Table-Lycoming Model 10-540-C4B5, 250 HP Engine

Press. Std. Alt. Alt. 1000 Temp.	Alt. Temp.	Appro	x. Fuel	55% Rat 10.6 Ga AN, PRI	l./Hr.	Appro	x. Fuel	65% Rate 11.9 Ga AN, PRI	188 HP - 75% Rated Approx. Fuel 13.7 Gal./Hr. RPM AND MAN, PRESS.			
Peet	o _F	2100	2200	2300	2400	2100	2200	2300	2400	2200	2300	2400
SL	59	21.9	21.0	20.2	19.6	24.6	23.5	22.7	22.0	26.2	25.2	24.4
1	55	21.7	20.8	20.0	19.4	24.4	23.3	22.5	21.8	25.9	25.0	24 . 1
2	52	21.4	20.6	19.8	19.2	24.1	23.0	22.2	21.5	25.6	24.7	23.9
3	48	21.2	20.3	19.6	19.0	23.B	22.8	22.0	21.3	25.3	24.5	23.6
4	45	20.9	20.1	19.4	18.8	23.6	22.5	21.8	21.1	25.0	24.2	23 4
5	41	20.7	19.9	19.2	18.6	23.3	22.3	21.5	20.9	24.8	24.0	23.1
6	38	20.5	19.6	19.0	18.4	23.1	22.0	21.3	20.7	24.6	23.8	22.9
7	34	20.2	19.4	18.8	18.2	22.8	21.8	21.1	20.4		23.6	22.7
8	31	20.0	19.2	18.5	18.0	22.6	21.5	20.8	20.2			22.5
9	27	19.8	18.9	18.3	17.8	22.4	21.3	20.6	20.0			
10	23	19.5	18.7	1.8.1	17.6		21.1	20.3	19.8			
11	19	19.3	18.5	17.9	17.4			20 1	19.6			
12	10	19.1	18.2	17.7	17.2	•			19.4			
13	12	18.9	18.0	17.5	17.0				•			••
14	9		17.8	17.3	16.8					-E2YK-2ŘI T exceed		
15	5			17,1	16.6					25" BELOW		

To maintain constant power, correct manifold pressure approximately $0.17^{\prime\prime}$ Hg, for each 10^{0} F variation in induction air temperature from standard altitude temperature. Add manifold pressure for air temperatures above standard; subtract for temperatures below standard.

FIGURE 9. Power setting table.

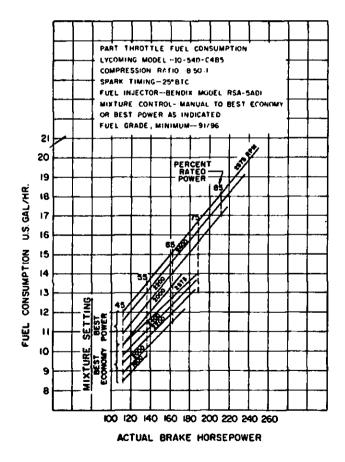


FIGURE 10. Part throttle fuel consumption chart.

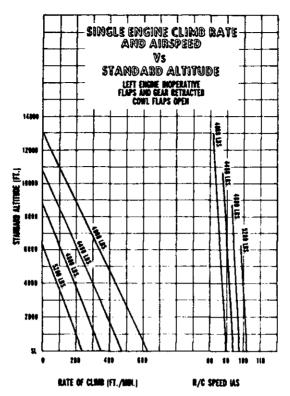


FIGURE 11. Single engine climb rate chart.

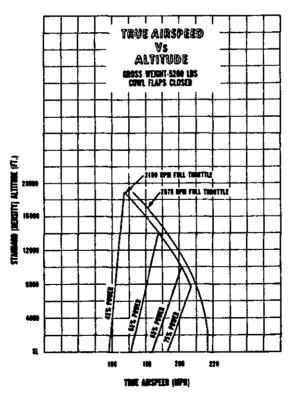


FIGURE 12. True airspeed chart.

SET ALTIMETER TO 29.92 IN. HG. WHEN READING PRESSURE ALTITUDE 15,000 14,000 13,000 ALTIMETER SETTING IN.HG. 12,000 **ALTITUDE ADDITION** FOR OBTAINING PRESSURE ALTITUDE 11,000 28.0 26.1 28.2 28.4 28.5 28.6 28.6 28.8 29.0 29.1 29.3 29.4 29.5 29.6 29.7 29.8 29.9 29.9 1,825 1,725 1,630 1,535 1,435 1,340 1,245 1,150 955 865 770 675 580 485 390 205 110 0 10,000 9,000 18000 DENSITY ALTITUDE FEET DTEMPERATURE 8,000 - 75 -165 -255 -350 -440 -530 -620 -710 -805 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9 31.0 7,000 6,000 5.000 4,000 3,000 2,000 1,000 S.L. 10 20 30 60 F 20 40 70 80 100 110 120 90

FIGURE 13. Pressure altitude density chart.

OUTSIDE AIR TEMPERATURE

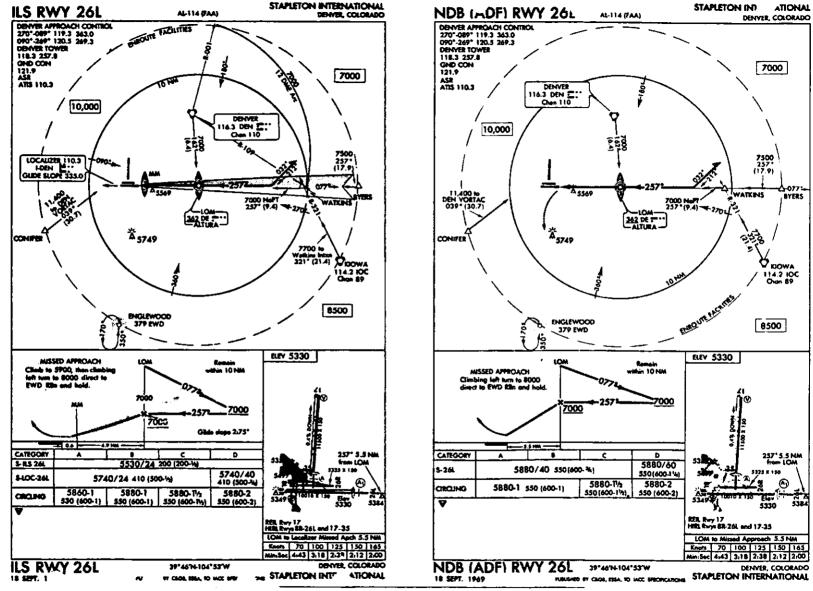


FIGURE 14. Instrument approach procedure charts-Denver, Colo.

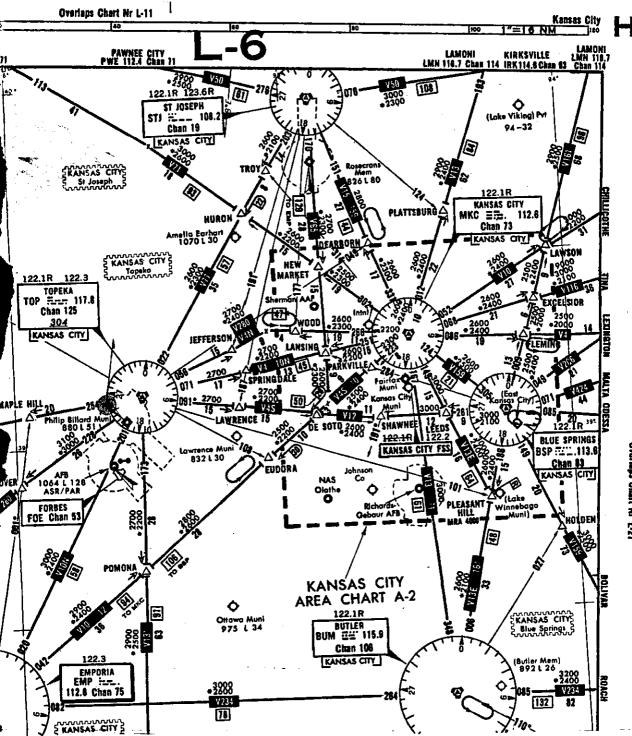
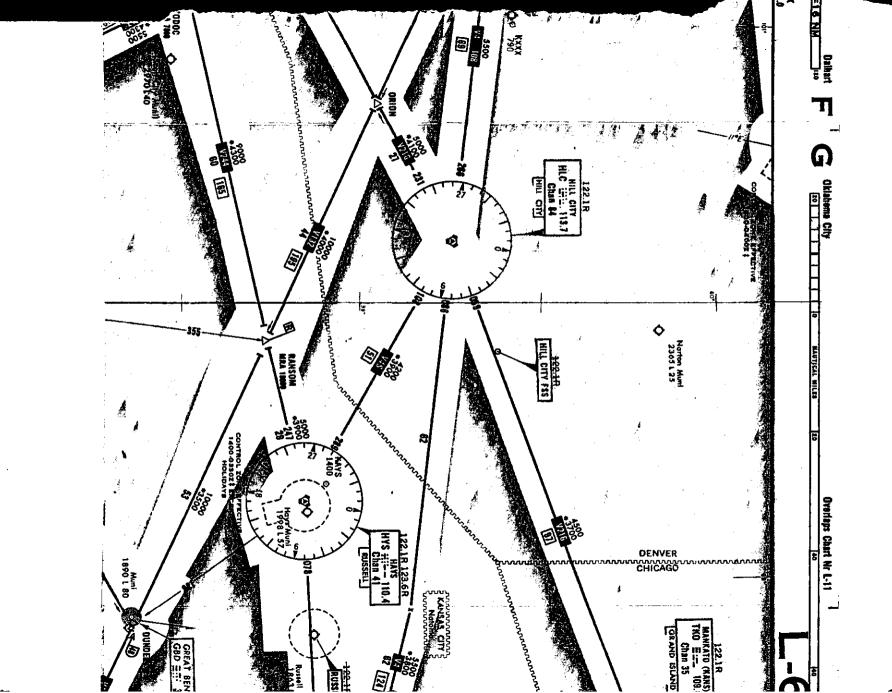
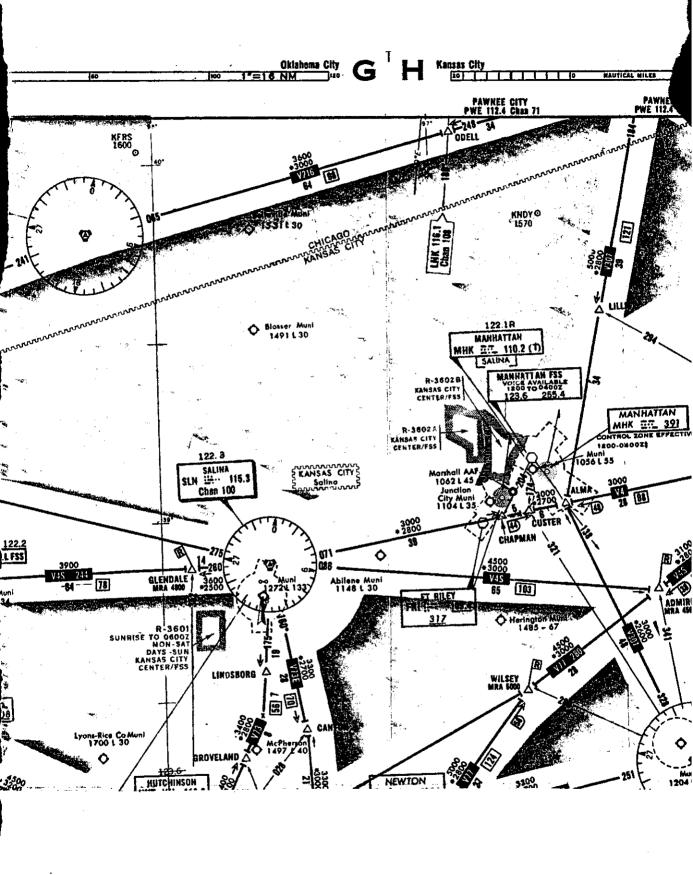
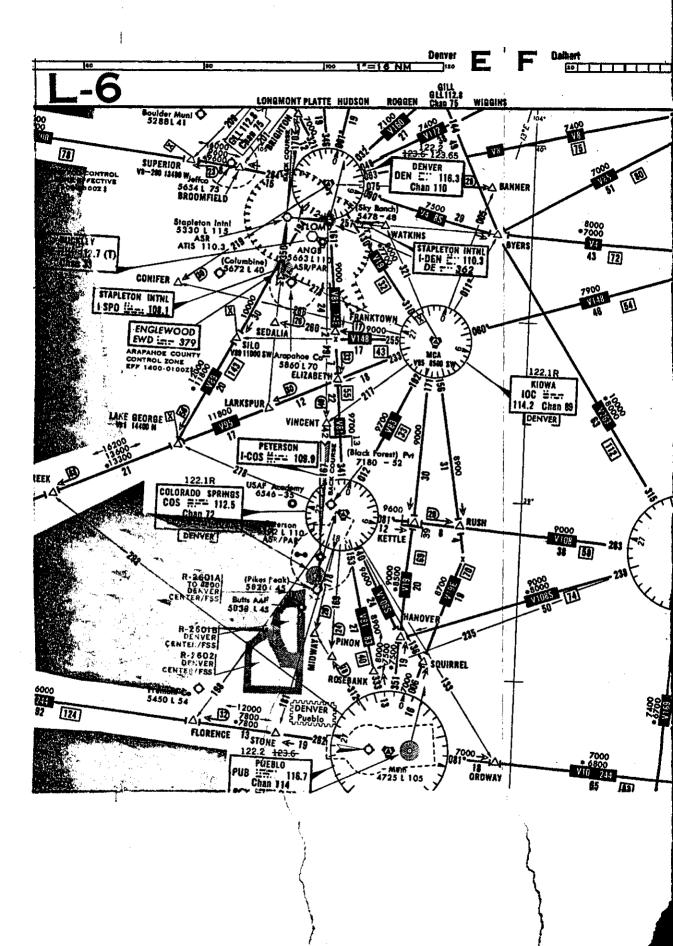





FIGURE 15. Segment of low altitude enroute chart L-6.

Cascami trui (al Cascami transiti Cascami trui (al Cascami transiti Trui trui transiti

CHRAIN) THE CHANGE FRE

10 mars and 10 mar

UNITED STATES GOVERNMENT FLIGHT INFORMATION PUBLICATION AREA CHARTS—U. S.

- 5 HM (se dart L.4, & L.21)

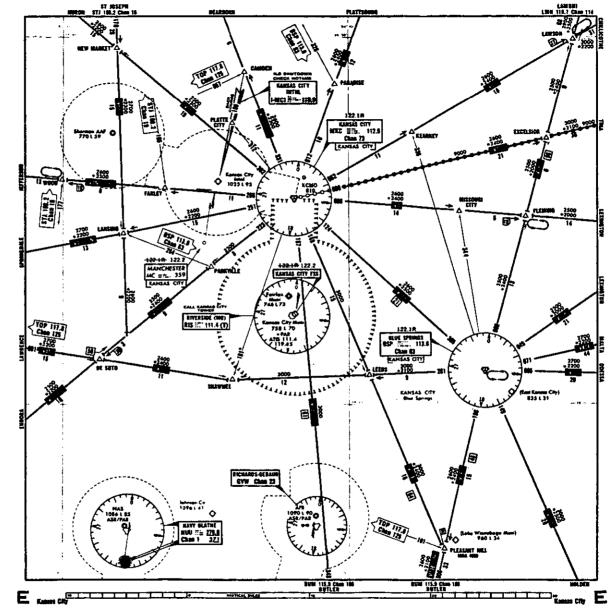
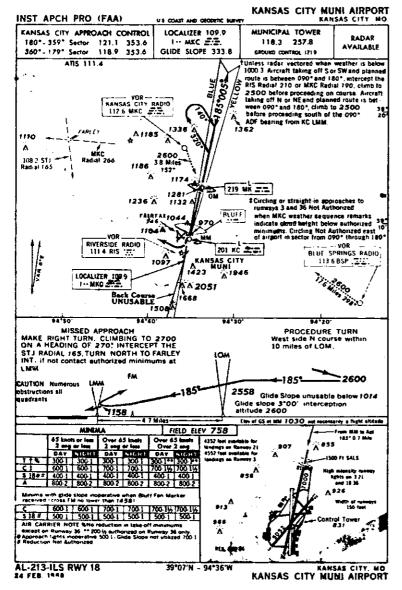



FIGURE 16. Kansas City area chart.

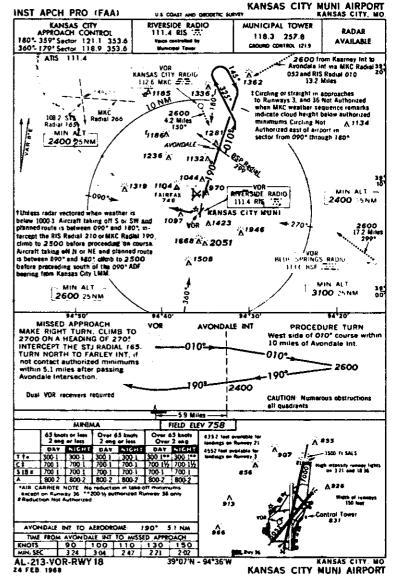
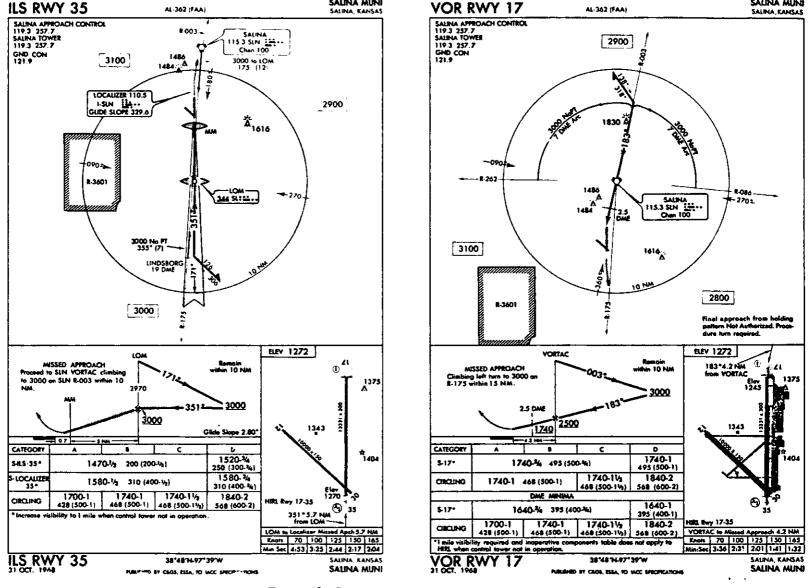
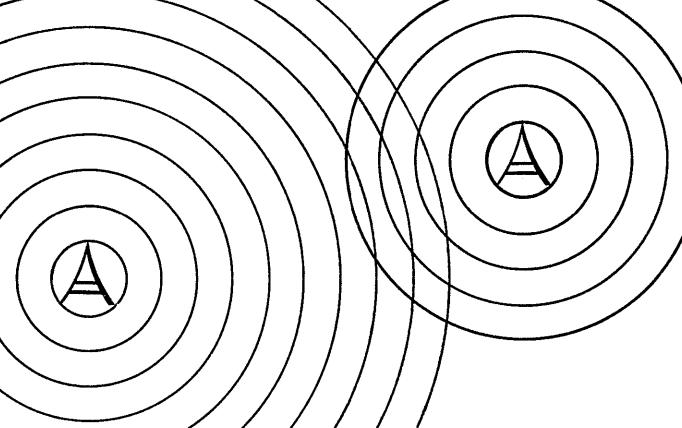



FIGURE 17. Instrument approach procedure charts—Kansas City, Mo.

SALINA MUNI

SALINA MUINT

FIGURE 18. Instrument approach procedure charts—Salina, Kans.


Return to

H. NOTTIS TADAM

GROUND INSTRUCTOR INSTRUMENT

Written Test Guide

DEPARTMENT OF TRANS
FEDERAL AVIATION ADMI

GROUND INSTRUCTOR INSTRUMENT WRITTEN TEST GUIDE

AC 143-2B

Revised 1971

DEPARTMENT OF TRANSPORTATION FEDERAL AVIATION ADMINISTRATION

Ground Instructor—Instrument—Written Test Guide

Introduction

This written test guide has been prepared by the Flight Standards Service of the Federal Aviation Administration to assist applicants preparing for the Ground Instructor-Instrument-Written Test. It outlines the scope of aeronautical knowledge covered in the test for the Instrument Ground Instructor Rating and suggests the subject areas in which the applicant should be well informed.

This guide is not offered as a quick and easy way to gain the knowledge necessary for passing the written test. There is no substitute for diligent study to attain basic knowledge. Neither is there an alternative to persistent effort for developing competence. Continuous review is essential to remain current in the many areas where technological change is the rule rather than the exception.

An applicant for the Instrument Ground Instructor Rating should make a thorough review of the "Study Outline" given in this guide. If an area of weakness is found, he should study that area until he has confidence in his ability to teach the material to students. After the review, he should take the sample test without aid, and then compare his answers with those in the "Analysis of Answers to Sample Test Items" found at the end of the sample test. If nearly all of his answers are correct, he is probably prepared to take the Ground Instructor-Instrument-Written Test. The applicant should keep in mind, however, that the required test will cover considerably more areas of knowledge than found in the sample test.

Requirements for Certificates and Ratings

Eligibility requirements for ground instructor certificates are outlined in Volume IX, Part 143 of Federal Aviation Regulations. Ratings are as follows: Ground Instructor Basic—Qualifies the holder to instruct in a basic pilot ground school.

Ground Instructor Advanced—Qualifies the holder to instruct in basic or advanced pilot ground school.

Ground Instructor Instrument—Qualifies the holder for ground instruction in an instrument flying school, and for the operation of instrument procedures training devices.

Applicants who do not hold a ground instructor certificate must take a written test on "Fundamentals of Instructing," as well as a written test for the rating desired.* Holders of a ground instructor certificate, with one or more ratings, are not required to retake the Fundamentals of Instructing test to obtain additional ratings. An applicant who holds a currently effective teacher certificate issued by a State, county, or city authorizing him to instruct in a junior or senior high school, or who is regularly employed as an instructor in an accredited college or university, shall be relieved from taking the written test on the "Fundamentals of Instructing."

The Written Test

The Ground Instructor Instrument Written Test emphasizes aeronautical knowledge areas in which the instrument ground instructor should be prepared to teach. Test items require a knowledge of air traffic, communications, and navigation procedures; operating principles of air navigation radio aids; and instrument flight techniques. The applicant

[•] For study guidance and reference materials for the test on "Fundamentals of Instructing," the applicant should consult the Ground Instructor Examination Guide, Basic-Advanced, AC 143-1B, available from the Superintendent of Documents, Government Printing Office for \$1.00.

must apply his knowledge of regulations, preflight duties, inflight operation, weather, navigation aids and procedures. The official test booklets include appropriate planning materials similar to those which appear in the appendix of this guide.

The Ground Instructor-Instrument-Written Test consists of multiple-choice questions similar to those shown in the sample test in this guide. The applicant indicates his choice of answers on a special answer sheet. Directions for taking the test and for marking the answers should be read carefully and understood by the applicant before he begins the test. Incomplete or erroneous personal information on the answer sheet may delay the scoring process. Approximately 5 hours are allowed to complete the test.

The applicant is notified of his grade on Airman Written Test Report, AC Form 8060-37. The report also contains coded indications of the subject matter involved in items missed by the applicant on the test. A Written Test Subject Matter Outline is provided to relate the codes to specific areas of knowledge. The Study Outline contained in this guide is similar to the Subject Matter Outline the applicant receives with AC Form 8060-37. An applicant who has successfully passed the required test should present AC Form 8060-37 to the Flight Standards District Office for issuance of the Ground Instructor Certificate with the appropriate rating.

An applicant who receives a failing grade must present the AC Form 8060-37 when appearing for retesting. He may apply for retesting—(a) after 30 days after the date he failed the test; or (b) upon presenting a statement from an appropriately rated certificated ground instructor certifying that he has given the applicant at least 5 hours additional instruction in the areas failed and now considers that he can pass the test.

Taking the Test

The test may be taken at Flight Standards District Offices of the FAA and at other designated places.

Bear in mind the following points when taking the test:

- 1. Answer test items in accordance with the latest regulations and procedures.
- 2. Read every question thoroughly. Comments received from applicants indicate that unsatisfactory performance on the written test is frequently the result of failure to read carefully rather than lack of knowledge. Do not try to solve the problem before understanding the question.
- 3. Do not consider a complicated problem a "trick" question; each question has a specific objective. There is no deliberate attempt to trick applicants.
- 4. There is only one correct and complete answer for each item.
- 5. Do not waste too much time on problems that confuse you. Go on to the questions that you can answer readily, then return to the more difficult items.
- 6. In solving a computer problem, select the answer closest to your solution. If you have solved the problem correctly, your solution will be nearest to the correct answer because the correct answer is an average of the answers obtained by using several types of computers.

Reference Materials

Persons studying for the Ground Instructor—Instrument—Written Test will find the publications listed in this section most helpful. The list identifies material essential to preparing for the test but does not include all material available in the subject areas. Textbooks and reference materials are available from various commercial publishers. Many public and institutional libraries offer study materials in both teaching methods and aeronautical subject areas. It is the responsibility of each applicant to obtain study material appropriate to his need.

AIRMAN'S INFORMATION MANUAL (AIM)

This publication presents, in four parts, information necessary for the planning and conduct of flights in the National Airspace System. Besides providing frequently updated airport and NAVAID data, the AIM includes instructional and procedural informa-

tion, and is designed for use in the cockpit. Each part is available by annual subscription at the prices shown.

	A_0	iditional
	Price	for Foreign Mailing
Part 1, Basic Flight Manual and ATC Procedures. (Issued quarterly)	\$ 4.00	\$1.00
Part 2, Airport Directory. (Issued semiannually)	\$ 4.00	\$1.00
Part 3 and 3A, Operational Data and Notices to Airmen. (Operational data issued every 28 days; Notices		
to Airmen issued every 14 days)	\$20.00	\$5.00
Part 4, Graphic Notices and Supplemental Data (Issued semiannually)	\$ 1.50	\$0.50

FEDERAL AVIATION REGULATIONS

The subscription prices listed include automatic revision service to all Parts contained in the Volume ordered. The FAR Parts contained in each Volume are listed in the "Advisory Circular Checklist and Status of Federal Aviation Regulations."

		A	dditional
			for
			Foreign
	P	rice	Mailing
Vol. I, Part 1, Definitions and Ab-			
breviations	\$	1.50	\$0.50
Vol. IX, Part 61, Certification: Pilots			
and Flight Instructors	\$	6.00	\$1.50
Vol. VI, Part 91, General Operating			
and Flight Rules	\$	5.00	\$1.25
Vol. XI, Part 95, IFR Altitudes	\$	2.75	\$0.75
Part 97, Standard Instrument			
Approach Procedures			
Vol. VII, Part 135, Air Taxi Operators			
and Commercial Operators of Small			
Aircraft	\$	6.50	\$1.75
Vol. IX, Part 141, Pilot Schools	\$	6.00	\$1.50
Part 143, Ground Instructors			

HANDBOOKS

Flight Instructor's Handbook, AC 61-16 (\$1.25 — GPO — FAA 5.8/2:F 64/7. This handbook has been prepared for the information and guidance of pilots preparing for the flight instructor certificate and for use as a reference by certificated flight and ground instructors. This handbook will be most useful

to those preparing for the Fundamentals of Instructing Section of the Ground Instructor Written Test.

Instrument Flying Handbook, AC 61-27 (\$2.50—GPO—TD 4.408:In 7/3). This is a basic text for instrument pilots. It deals with training considerations, aerodynamic factors, physiological factors, flight instruments and their use, air navigation aids, communications, the air traffic system, and flight planning.

Aviation Weather, AC 00-6 (\$4.00—GPO—FAA 5.8/2:W 37). An excellent reference treating phases of meteorology of interest to the instructor. Aviation weather reports and forecasts are also covered with respect to format and content.

Pilot's Weight and Balance Handbook, AC 91-23 (70¢—GPO—TD 4.408:P 64/3). Presented from the viewpoint of the pilot, this handbook pays particular attention to the aircraft loading problems of general aviation pilots when operating light aircraft, including twin-engine and air-taxi types. The text progresses from an explanation of basic fundamentals to the complex application of weight and balance principles in large aircraft operations.

CHARTS

Instrument Approach Procedure Charts. Individual charts give detailed information on procedures for specific airports.

Enroute Charts: Low-Altitude and High-Altitude. These charts provide the necessary aeronautical information for en route instrument navigation.

Low-Altitude Area Charts. These charts supplement the Enroute Charts by providing departure, arrival, and holding procedures at principal airports.

Advisory Circulars

The following Advisory Circulars pertain to areas of knowledge listed in the Study Outline and are free of charge: 00-17, 00-24, 20-32A, 60-4, 60-6, 90-1A, 90-12, 90-14A, 90-22B, 90-23A, 90-35, 90-36, 90-38A, 90-41, 90-46, 91-8A, 91-19, 91-30, 170-3B.

Exam-O-Grams

VFR Exam-O-Grams and IFR Exam-O-Grams are nondirective in nature and are issued solely as an information service to individuals interested in airman written tests.

How To Obtain Study Materials

The study materials listed, except the charts, free Advisory Circulars, and Exam-O-Grams, may be obtained by remitting check or money order to:

Superintendent of Documents U.S. Government Printing Office Washington, D.C. 20402

To expedite your order when ordering publications from the Superintendent of Documents, be sure to include with the title of single publications the GPO catalog number given in the price line (e.g., TD 4.408:In 7/3 or FAA 5/8:W 37). Order subscription and single publications separately.

The National Ocean Survey publishes and distributes aeronautical charts of the United States. Charts for foreign areas are published by the U.S. Air Force Aeronautical Chart and Information Center (ACIC) and are sold to civil users by the National Ocean Survey.

Study Outline

This study outline indicates the areas of aeronautical knowledge which pertain to the written test. It expands the general aeronautical knowledge requirements set forth in Federal Aviation Regulations, and is based on airman activity for flight under Instrument Flight Rules.

REFERENCE CODE:

AIM—Airman's Information Manual EOG—IFR Exam-O-Gram
AC—Advisory Circular
AW—Aviation Weather (AC 00-6)
FAR—Federal Aviation Regulations
IFH—Instrument Flying Handbook

PILOT RESPONSIBILITIES (FAR)
A01. Authority and Limitations

A "Catalog of Aeronautical Charts and Related Publications" listing their prices and instructions for ordering may be obtained free, on request, from:

Distribution Division (C-44) National Ocean Survey Washington, D.C. 20235

Orders for specific charts or publications should be accompanied by check or money order made payable to, "NOS, Dept of Commerce."

Exam-O-Grams may be obtained free of charge (one copy per each request) and names may be added to the mailing list by writing to:

Department of Transportation FAA Aeronautical Center Flight Standards Technical Division Operations Branch, AC-240 P.O. Box 25082 Oklahoma City, Okla. 73125

Advisory Circular titles and a summary of what each contains may be obtained by requesting an "Advisory Circular Checklist and Status of Federal Aviation Regulations," from:

Department of Transportation Federal Aviation Administration Distribution Unit, TAD-484.3 Washington, D.C. 20590

Pilot-in-Command (91.3) Emergency action (91.3) deviation from rules reports required

A02. Certificates and Ratings (61.3, 61.15, 61.16)

Instrument rating requirements (61.35)
when required (61.3, 91.97)
written test unauthorized conduct
(61.20)
retesting after failure (61.27)
Medical certificates (61.43)
Instrument flight time (AC 61-9)
pilot logbooks (61.39)
recent flight experience, (61.47,
91.21)
simulated (91.21)

Certificate reports change name (61.13) lost certificates (61.13) change address (61.51)	91.105, 91.107) IFR approaches (91.117) descent below MDA or DH unusable components and aids
A03. Preflight Action for Flight (91.5, AIM-1, EOG-31) Weather check Fuel required (91.23) Alternate course of action Delays	Aircraft speed (91.70) A08. Enroute Limitations (AIM-1) Minimum altitudes (91.119, EOG-8, MEA MOCA MCA
A04. Preflight Action for Aircraft Documents (91.27) Airworthiness Certificate (91.29) Registration Certificate (91.27) Operating Limitations (91.31) Aircraft Inspections (91.165, 91.169) Equipment and Systems equipment required (91.33, 91.90, 91.97)	MRA MAA Cruising altitudes (91.121) Courses to be flown (91.123) Altimeter settings (91.81) Special use airspace restricted areas positive control areas (91.97) jet advisory areas (91.99)
tests and inspections VOR receiver (91.25) altimeter system (91.170) Portable electronic devices (91.19)	Basic Knowledge B01. Physiological Factors (Ch. II-IFH, AIM-1) Physiological altitude officers
A05. Flight Plan (AIM-1) When required (91.97, 91.115) Information required (91.83) Alternate airport (91.83) when required (EOG-29) minimums Closing flight plan (91.83)	Physiological altitude effects: aerotitis; aerosinusitis; hypoxia (AC 91-8A) Hypoxic effects carbon monoxide (AC 20-32A); alcohol; hyperventilation; drugs Sensations of instrument flying (AC 60-4):
A06. Compliance With Clearance (91.75, EOG-6, AIM-1) Communications reports (91.125) With communications failure route procedures (91.127) malfunction reports (91.129) Emergency deviation (91.75) detour thunderstorm change of altitude (icing or turbulence) Mid-air collision avoidance (VFR EOG-22, 29, 48)	motion; postural sense; sight Spatial disorientation B02. Aerodynamic Factors (Ch. III-IFH Private Pilot's Handbook of Aeronautical Knowledge) Forces Power/airspeed/vertical speed Turns forces in a turn constant rate turns rate/speed/angle of bank coordination
A07. Terminal Area Limitations (AIM-1) Terminal control area (91.90) Airport traffic area (91.85) Airport with tower (91.80) Airport without tower (91.89) Takeoff and landing minimums (91.116,	B03. Gyroscopic Instruments and Systems (Ch. IV-IFH) Systems vacuum electric Operating principles

Attitude Indicator (EOG-24) preflight and flight limits use Turn Indicator preflight and flight limits use (EOG-18) Directional Indicator preflight and flight limits use	Basic maneuvers straight and level climbs and descents turns (EOG-18) unusual attitudes flight patterns B07. Unusual Flight Conditions (AC 90-12) Wake turbulence (AC 90-23A, AIM-1) cause
B04. Magnetic Compass (Ch. IV-IFH) types principles of operation use errors and corrections B05. Pitot-Static Instruments (Ch. IV-IFH)	avoidance Thunderstorm encounter (AC 00-24, page 110-AW) Ice accumulation (pages 117, 124-AW) structural carburetor or induction system frost
Pitot static system Altimeter (EOG-10) principles of operation use altimeter settings (AIM-1) pressure altitude errors and corrections altitude definitions indicated pressure true absolute density Vertical Speed Indicator principles of operation use limits and adjustment Airspeed Indicator principles of operation use markings (VFR EOG-45) airspeed definitions indicated calibrated equivalent	Clear air turbulence (AC 00-17) B08. Flight Planning Computer Operations (Ch. XIII-IFH) Slide rule face groundspeed time distance fuel time gallons or pounds scale conversions (knots/m.p.h.) airspeed conversions calibrated equivalent true altitude conversions pressure/density Wind correction face headings variation deviation groundspeed B09. Density Altitude Chart (VFR EOG-33) Altimeter setting/pressure alt. tables
true B06. Attitude Instrument Flying (Ch. V-IFH) Instruments pitch bank power Preflight instrument check	Pressure alt./density alt. B10. Aircraft Performance (Aircraft Owner's Handbook) (VFR EOG-33, IFR EOG-32, AC 90-14A) Performance Charts cruise performance altitude gross weight power settings (VFR EOG-38)

fuel flow	precipitation
takeoff distance	dew and frost
climb performance	B13. Stability
best angle	Atmosphere (Ch. 6-AW)
best rate	lapse rates
balked landing	stability determinations
single engine	effects of stability and instability
landing distance	Wind (Ch. 7-AW)
indicated/calibrated airspeed	convection currents
Instrument markings	obstructions to wind flow
Placards	shear
B11. Aircraft Operating Limitations (docu-	clear air turbulence
ment in aircraft) (EOG-21, AC 60-6)	intensity
Weight and balance	B14. Air Masses and Fronts (Ch. 9 & 10-AW)
c.g. or moment limits	•
passenger/baggage limits	Sources
fuel distribution	air mass
fuel burn	frontogenesis Classification
Instrument limit markings	air mass
Limiting placards	front
loading limits	Modification
gear and flap operation	Characteristics
maneuvering speed	Associated clouds (Ch. 8-AW)
Charts	·
turbulent air penetration	B15. IFR Weather Hazards
maximum safe crosswinds (VFR EOG-27)	Thunderstorms (Ch. 11-AW), AIM 1) structure and formation
B12. Properties of the atmosphere	turbulence hail
Composition (Ch. 1-AW)	lightning
Temperature (Ch. 2-AW)	Icing (Ch. 12-AW)
measurements	types
temperatures aloft	conditions for formation
Atmospheric pressure (Ch. 3-AW)	Fog and obstructions to vision
measurements	types
sea level pressure	formation
pressure systems	B16. Weather Observations (Ch. 15-AW)
altimeters	
Wind (Ch. 4-AW)	Aviation Weather Reports (SA) (EOG-5)
circulation	Pilot Weather Reports (UA)
systems	Weather Radar Observations (SD)
local variations	Upper Air Observations
Moisture (Ch. 5-AW)	RAWIN
changes of state	PIBAL
measurements	
relative humidity	B17. Weather Charts (Ch. 16-AW)
dew point	Weather depiction (EOG-15)
condensation, supersaturation, and	Surface weather
sublimation products	Constant pressure
cloud and fog	Radar summary (EOG-17)

	Prognostic	surface and load bearing capacity
	surface (EOG-16)	elevation
	constant pressure	traffic pattern
	significant weather	obstructions
	12-hour upper wind	markings (AIM-1, EOG-26, 28)
D10		Lighting (AIM-1)
B18.	Aviation Weather Forecasts (Ch. 17-	rotating beacon
	AW)	
	Terminal (EOG-5)	runway lighting aids
	12-hour (FT1)	boundary
	24-hour (FT2)	approach, REIL, and VASI
	Area (FA) (EOG-5)	centerline
	Winds aloft (FD) (EOG-5)	threshold
	In-flight weather advisories (FL)	Unicom (AIM-3)
	Severe weather	controlled airport
		non-controlled airport
	hurricane advisories (WH)	
	outlook (AC)	C02. Basic Principles of Navigation Facilities
	forecast (WU)	(Ch. VI-IFH)
	Prognoses	Radio ranges
	surface analysis (AS-2 and FS-1)	VOR, VORTAC
	regional prognosis (FN-1)	homing beacons
D10	Interpretation of combined weather re-	ILS
DIÐ.	-	Aids
	ports and forecasts	marker beacons
B20.	Weather Services (Ch. 14 and 18-AW,	DF
	AIM-1)	radar beacon (AC 00-27)
	National Weather Service	radar beacon (AC 00-21)
	telephone listings (AIM-2)	C03. Use of Navigation Facilities (Ch. VII-
	pilot/forecaster (Enroute Chart)	IFH)
	FSS	VOR (EOG-7, 14)
	location (AIM-2)	accuracy check (EOG-22, AC 91-18)
	telephone listing (AIM-2)	VOT (AIM-3)
	,	· · · · · · · · · · · · · · · · · · ·
	air/ground frequencies (AIM-3)	VOR receiver checkpoints (AIM-
	Scheduled broadcasts	4)
	local ATIS	orientation
	NAV facilities	position
	transcribed weather broadcasts	airway intersection
	Unscheduled broadcasts	tracking
	SIGMETS	\mathbf{ADF}
	AIRMETS	orientation
		homing
Faci	LITIES	basic procedures (EOG-23)
C01.	Airport Physical Facilities (AIM-3, 3A,	ILS (Ch. VI-IFH)
	Enroute and Approach Charts)	localizer
	Service	glide slope
	fuel	marker beacons
		lighting aids
	storage	
	repair	DME (Ch. VI-IFH, AC 170-3B)
	oxygen	Transponder (EOG-25, AC 00-27)
	Runways	code
	number and longest	mode
	· · · · · · · · · · · · · · · · · · ·	3

output normal low	Advisories Radar services Distress assistance
C04. Control Tower Facility (Ch. VIII-IFH, AIM-1, 3, 3A, 4) Ground Control clearance delivery (AIM-1) taxi control (AIM-1) frequencies (AIM-3) Departure Control radar services (AIM-1) frequencies (AIM-3) Takeoff and landing control separation (AIM-1) frequencies (AIM-3) Approach control radar (AIM-1) services	Co7. Use of Communication Facilities Communication phraseology (Ch. IX-IFH, AIM-1) procedures (EOG-11) phonetic alphabet procedural words and phrases (AC 90-39) frequency discipline (AC 90-35) Airborne equipment (Ch. VII, VIII-IFH) systems frequencies (AIM-3, AC 90-11A) Clearances and control sequence (AIM-1, Ch. X, XI-IFH, EOG-4) clearance shorthand (Ch. XIV-IFH)
approaches monitor non radar (AIM-1) frequencies (AIM-3) VHF direction finding (AIM-1) ATIS (AC 90-22A) use frequencies (AIM-3) Use of runways (AIM-1) Light signals (91.77, AIM-1) C05. Flight Service Station facility Weather Services (AIM-1) briefing (AIM-1)	clearance items (AIM-1) C08. Status of Facilities and Airways Airport/Facility Directory (AIM-3) NOTAMS (AIM-3A) Restrictions to Enroute Navigation Aids (AIM-4) Special Notices (AIM-4) Preferred Routes (AIM-3, AC 90-38) SID's and STARS (AIM-3) Substitute Route Structure (AIM-3) Area Navigation Routes (AIM-3) Charts Enroute Area
telephone listing (AIM-2) Flight Plan Service (AIM-1) file and close enroute reporting communication frequencies (AIM-3, Enroute Chart) Airport Advisory Service airport information (AIM-1) frequencies (AIM-3)	AIRSPACE AND AIRWAY ROUTE SYSTEM D01. Controlled Airspace (AIM-1, Enroute and Area Charts) Airport Traffic Area Control Zone Control Area Continental Control Area Positive Control Area
VHF direction finding (DF) (AIM-1) C06. Air Route Traffic Control Center (ARTCC) (Ch. XI-IFH) Traffic control geographic area (enroute chart) communication frequencies (Legend-Enroute Chart)	D02. Special Use Airspace (AIM III, Enroute and Area Charts) Prohibited Area Restricted Area and Climb Corridor Warning Area Intensive Student Jet Training Area Alert Area

D03. National Security (AIM-1) ADIZ SCATANA	Flight Plan (AIM-1) ATIS (AIM-1)
D04. Victor (VOR) Airways (Low Altitude Enroute and Area Charts) Limits width	Route Clearance (AIM-1) pre-taxi clearance delivery other clearance delivery Taxi (AIM-1)
base	E02. Takeoff and Departure Procedures
top	(AIM-1, Ch. XII-IFH)
Radials and bearings	Takeoff
Route identification	Departure
airway	non radar
military route	radar vector
substitute route	SID's (SID Booklet)
unusable route	Altitude control
Altitude limits (EOG-8)	climb
MOCA	crossing
MEA	E03. Enroute Procedures (Ch. XII-IFH,
MRA	AIM-1)
\mathbf{MCA}	•
MAA	Normal Navigation
Compulsory and noncompulsory re-	reporting handoffs
porting points	Radar Environment
facilities	
VOR/VORTAC	reporting handoffs
NDB	Altitude
intermediate fixes	climb or descent
VOR bearing intersections	VFR on top
DME/VOR radial	cruise
Segment limits	maintain
mileage breakdown	Delays
minimum altitude change	clearance limit
VOR changeover points	holding
altimeter setting boundary	procedures (AIM-1)
time zone boundary	fixes (Enroute Chart)
D05. Area Navigation (AC 90-45, EOG-31)	E04. Arrival (Ch. XII-IFH, AIM-1)
Area Navigation Routes (RNAV)	STARS (AC 90-41)
Waypoints	Radar vectors
Ground facilities	Holding (AC 90-46)
Airborne equipment	E05. Approaches (AC 90-1A or Appendix
types	
presentation	IFH, Approach Charts)
course line	VOR
distance	VOR/DME
vertical	NDB
D06. Direct Flights (AIM-1)	ILS
, ,	localizer
ATC OPERATIONS AND PROCEDURES	back course

Radar (AIM-1, EOG-27)
PAR
ASR
Contact and Visual
Missed Approaches
E06. V/STOL Operations (when available)
E07. Emergencies (AIM-1, EOG-2)
Lost
transponder code
triangle
emergency frequency
chaff (AC 90-36)
Forced landing or crash
beacon (AC 91-19)
air sea rescue (AIM-1)

Difficulty with communications

Malfunction of equipment
aircraft accessory
communication equipment
Part 430, Rules Pertaining to Aircraft
Accidents, Incidents, Overdue Aircraft
and Safety Investigations
immediate notification
manner of notification
reports

F01. Aeronautical Terms (FAR 1 and AIM-1, Glossary)

Note.—Applicants for original issuance of a Ground Instructor Certificate with an instrument rating should refer to the Ground Instructor Examination Guide—Basic-Advanced for a Study Outline and sample test on Fundamentals of Instructing.

Sample Test

The following items are typical of those in the official FAA written test. Answers and explanations or references are given on pages 00 and 00.

Note: The sample items, answers, and analyses are based upon procedures and regulations in effect at the time of preparation of this publication. Regulatory and procedural changes subsequent to the date of publication should be checked for their effect on the applicable item.

- 1. An instrument rated pilot meets the recency of experience requirements for daylight instrument flight. Which statement is correct regarding additional recency of experience requirements for this pilot to carry passengers on an instrument flight at night?
 - 1—Within the preceding 6 months, the pilot must have made at least 3 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in an aircraft to be flown on the instrument flight.

- 2—Within the preceding 90 days, the pilot is required only to have made 5 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in any aircraft.
- 3—Within the preceding 6 months, the pilot must have made at least 5 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in an aircraft of the same category, class, and type as the aircraft to be flown.
- 4—Within the preceding 90 days the pilot is required only to have made 3 takeoffs and landings to a full stop between 1 hour after sunset and 1 hour before sunrise in any aircraft.
- 2. Normally, a VOR marked (T) on the enroute charts should not be used for navigation when flying at altitudes above 12,000 ft. An aircraft at this altitude may receive undependable navigation signals because

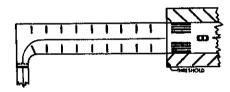
- 1—transmitter signal strength is under 25 watts.
- 2-course azimuth is not accurate above 12,000 feet.
- 3—atmosphere conditions may affect the signals.
- 4-signals from another VOR may interfere.
- 3. Students should be taught that a pilot departing an airport in uncontrolled airspace under instrument weather conditions
 - 1—has no assurance of separation from other traffic.
 - 2—must stay clear of clouds until he has received an IFR clearance.
 - 3-must file a flight plan before takeoff.
 - 4—will be controlled by Air Route Traffic Control.
- 4. Which is a true statement regarding the indications of the needle and ball of a properly calibrated 2-minute turn and slip indicator?
 - 1—The turn needle gives a direct indication of the aircraft's angle of bank.
 - 2—The position of the ball does not affect the accuracy of the turn needle.
 - 3—A one-needle width deflection indicates a turn of 3° per second only if the ball is centered.
 - 4—The rate of turn is too great for the angle of bank when the ball is on the low side of the turn.
- 5. Unreliable course guidance information may be indicated on a Nav/Com system during which of the following situations?
 - 1-When using the Nav/Com transmitter.
 - 2—During reception of voice transmissions.
 - 3—When approaching a radio beacon on an LOC back course approach.
 - 4—When making an ILS front course approach with the OBS set at some value other than the front course inbound bearing.
- 6. When using the magnetic compass to establish and maintain a heading, the pilot should remember that, due to the normal

- characteristics of a compass, it will usually indicate a turn toward
 - 1—south when the airplane is accelerating on a heading of east.
 - 2—north when entering a right turn from a heading of east.
 - 3—east when accelerating on a heading of north.
 - 4—west when entering a right turn from a heading of north.
- 7. Your students should know that the primary purpose of the elevator trim tab is to
 - 1-keep the elevator streamlined.
 - 2-relieve elevator control pressures.
 - 3-reduce control pressures while changing the aircraft pitch attitude.
 - 4-increase longitudinal stability.
- 8. An instrument student should know that on any simulated instrument flight outside the vicinity of an airport, the pilot-in-command must familiarize himself with all available information concerning that flight. Which of the following must the pilot accomplish?
 - A. Check available weather reports and forecasts.
 - B. File a flight plan.
 - C. Determine fuel requirements.
 - D. Determine runway lengths and takeoff and landing distances required at airports of intended use.
 - 1-A, B, and C
 - 2-A and C only
 - 3-A, C, and D
 - 4-B and D only
 - 9. Pressure altitude is obtained by
 - 1—correcting terrain clearance altitude for temperature.
 - 2—setting the altimeter to standard sea level pressure.
 - 3—setting the altimeter to a station pressure in inches of mercury which has been corrected to sea level.
 - 4—correcting the altimeter for temperature deviation from standard.

10. A pilot tunes his ADF receiver to a radio beacon. Refer to the following illustration:

VAR—10° E. DEV—5° W.

TAS-170 knots Wind-360°/30 (true)


The aircraft is located on a magnetic bearing from the station of

- 1-250°.
- $2-255^{\circ}$.
- 3-260°.
- 4-075°.
- 11. Abrupt control movement when changing aircraft attitude
 - 1—helps to eliminate instrument lag.
 - 2—results in erroneous indications on the attitude indicator.
 - 3—results in less error in stabilizing the aircraft.
 - 4—may result in overcontrolling and unnecessary stress on the aircraft.
- 12. If a student is making a timed turn to the right and the turn needle indicates the correct rate of turn, but the ball is to the left of center, the student should
 - 1—apply left rudder pressure and maintain the same degree of bank.
 - 2—decrease right rudder pressure if holding right rudder or apply left rudder and steepen the bank.
 - 3—decrease right rudder pressure and shallow the bank.
 - 4—use same rudder pressure and steepen the bank.
- 13. Choose all the statements which are true when the gross weight of the airplane is increased.
 - A. Stalling speed will decrease.

- B. Takeoff distance will increase.
- C. Recommended approach speed will remain the same.
- D. Maximum rate of climb will decrease.
- E. Horizontal stabilizer will carry a greater percent of the total weight.
 - 1-A, B, and D
 - 2-B and E
 - 3-C, D, and E
 - 4-B and D
- 14. If you are cleared to a fix short of your destination airport and not given an "expect further clearance time," normally you may expect to receive further clearance
 - 1—at least 3 minutes before your ETA at the fix.
 - 2—at least 10 minutes before your ETA at the fix.
 - 3—when you notify ATC that you are at the clearance limit.
 - 4—before reaching the fix.
- 15. In the Northern Hemisphere above the friction layer, the air flows
 - 1—at right angles to the isobars from a high pressure area to a low pressure area.
 - 2—counterclockwise around a low pressure area, clockwise around a high pressure area, and parallel to the isobars.
 - 3—clockwise around a low pressure area, counterclockwise around a high pressure area, and parallel to the isobars.
 - 4—from a high pressure area to a low pressure area at 45° to the isobars.
- 16. Choose the true statements regarding the formation of frost on an airplane's wings.
 - A. Frost can form in flight when an airplane descends from a zone of subzero temperatures to a zone of above freezing temperatures and high humidity.
 - B. Frost occurs when dew forms on the wings and the surrounding air is below freezing.
 - C. Frost cannot form on the wings of an airplane unless the temperature of the air surrounding the wings is at least 2° below freezing.

- D. The surface of an airplane's wings must be below freezing before frost will form on the wings.
 - 1-A and C
 - 2-A and D
 - 3-B and C
 - 4-B and D
- 17. Which statement regarding the stability of the air is true?
 - 1—If very stable moist air is forced to ascend a mountain slope, clouds will be layerlike with little vertical development.
 - 2—If air is subsiding (sinking), the heat of compression causes the air to become unstable and usually sets off considerable vertical development of clouds.
 - 3—When an area of poor visibility due to smoke and haze persists, it is usually due to the air being saturated and unstable.
 - 4—When an unsaturated air mass is heated from below, the air tends to become more stable.

18.

In the figure above, the area to the left of the threshold is

- 1—an "over-run" with sufficient strength for all aircraft operations.
- 2—an abandoned runway area which may not be used for any aircraft operations.
- 3—a "deceptive area" with a marked centerline usable only for taxiing.
- 4—a stabilized blast-pad, no part of which may be used for taxiing, takeoff, or landing.

19. Students should understand that during a level turn, the stalling speed and load factor of an airplane increase as the bank increases. Which statement regarding load factor and stalling speed is true on an airplane with a V₈₀ of 65 knots? (See Appendix, Figure 2.)

- 1—The lift required for a 60° bank is twice that required in straight and level flight.
- 2—The stalling speed when in a 60° bank is twice as much as when in straight-andlevel flight.
- 3—After reaching a 60° bank the load factor and stalling speed increase at the same rate.
- 4—An airplane in normal category at full gross weight would not exceed the limit load (3.8) unless it reached a bank of 85°.
- 20. According to Figure 3, which statements concerning power and drag are true?
 - A. Maximum endurance is obtained at an airspeed of approximately 120 knots.
 - B. Minimum drag occurs at an airspeed of 160 knots, which is the best speed for maximum endurance.
 - C. L/D max occurs at the airspeed which also gives the least total drag.
 - D. Total drag always increases with an increase in airspeed.
 - 1-A and C only
 - 2-A, B, and C
 - 3-B, C, and D
 - 4-B and D only

Test items 21 through 40 are based on the planning and execution of an IFR training flight, covering some elements of preflight and inflight procedures.

Aircraft Data and Flight Conditions

This flight is assumed to be made in a light twin-engine aircraft typical of those used in general aviation. Aircraft data will be given as needed for particular test items. The flight is from Denver Stapleton International Airport to Kansas City Municipal Airport. The flight time analysis found in the Appendix (Figure 1), contains information to be used in the planning of this flight. It may be removed from the booklet and used for your calculations. The Appendix also includes data for use in solving various test items.

ROUTE OF FLIGHT: See partially completed flight plan below.

		AVIATION A						1	Budj	Form Appro	
		· · · · ·			Ti T	YPE OF F	LOHE	DIAM	<u> </u>	AIRCRAFT IDENTIF	ICATION:
					 	FYFR	10	YFR	1 *		
					XX			DVFR	ł	N 1234F	,
J. AIRCRAFT TYPE/SPECIAL	EQUIPMENT 1	4. TR	HUE AIRSPEED A. POINT OF DEPARTURE		6. DEPARTURE TIME		URE TIME	7. INITIAL CLUISING			
				1			PROP	OSED (Z)		ACTUAL (Z)	ALTITUDE
ASTRO/A		- 1	170	I	DEN		000			9,000	
·			KNOTS				ן י	1930			<i>)</i> ,,,,,,,
8. ROUTE OF PLIGHT							•				-
Radar Vec	Radar Vector Byers V4 MKC										
9. DESTINATION (Name of	sirport and city)		10. REMARKS								
Kensas Çi	ar Mund										
Kansas Ci	•										
11. ESTIMATED TIME EN ROU			10 11 20 11	112222				1	-	OT'S NAME	
			13. ALTERNATI	: AIRPORT(S	1			14	, FIL	OF NAME	
HOURS MINUTES	HOURS	MINUTES		SI	N						
	Ì	1)					1			
15. PILOT'S ADDRESS AND TELEPHONE NO. OR 14. NO. OF PERSONS ABOARD 17. COLOR OF AIRCRAFT 18. FLIGHT WATCH STATIONS											
CLOSE FLIGHT PLAN UPON ARRIVAL J SPECIAL EQUIPMENT SUPPIX A — DAR 8 4096 Code transposder B — DAR 8 44 Code transposder U — 4096 Code transposder U — 4096 Code transposder R — DAR 9 44 Code transposder U — 4096 Code transposder A — Transposder—as code											

FAA Form 7233-1 (4-44) POEMERLY PAA 398

0052-027-8000

- 21. According to the weather depiction chart (Figure 4),
 - 1—the lowest ceiling along the proposed route of flight is at Kansas City (MKC).
 - 2-VFR conditions exist for more than half of the route.
 - 3-stations between SLN and MKC have scattered clouds.
 - 4-VFR conditions exist in Kansas south of Salina (SLN).
- 22. After checking the area forecasts (Figures 5 and 6) and the 12-hour upper wind prog (Figure 7), you determine that during the proposed flight you
 - 1—will encounter moderate icing in eastern Kansas.
 - 2—are not likely to encounter icing conditions.
 - 3—are likely to encounter moderate CAT in Colorado.
 - 4—are likely to encounter moderate turbulence in northwest Kansas.

- 23. Which statement is a correct interpretation of the SA report (Figure 8)?
 - 1—Denver (DEN) has scattered clouds at 1,700 feet.
 - 2—Topeka (TOP) does not have a ceiling, but the visibility is 2 miles with very light rain.
 - 3—Wichita (ICT) has a temperature of 34° F.
 - 4—Kansas City (MKC) has a wind from 140° at 7 knots.
- 24. From the Power setting table and Fuel consumption chart (Figures 9 and 10), determine the power setting that will give the best fuel economy at 65%. (Pressure altitude of 9,000 feet—air induction temperature 0° C.)
 - 1-2100 r.p.m. 22.4" manifold pressure.
 - 2-2200 r.p.m. 21.13" manifold pressure.
 - 3-2300 r.p.m. 20.6" manifold pressure.
 - 4—Any of the above will give 65% power and have the same fuel burn.

- 25. If the left engine fails after you start the climb, what rate of climb should be obtainable according to Figure 11?
 - 1—20' per minute 2—0' per minute 3—50' per minute 4—200' per minute (Use gross weight of 5,200 lbs.-standard altitude of 6,000 feet-IAS of 97 m.p.h. or 84 knots.)
- 26. At a standard altitude of 9,000 feet, 65% power should produce a true airspeed of (Figure 12)
 - 1-174 knots.
 - 2-178 knots.
 - 3-185 knots.
 - 4-200 knots.
- 27. Determine the density altitude for Stapleton International Airport from the Pressure altitude density chart (Figure 13).

(Obtain temperature and altimeter setting from the SA 1900Z report, Figure 3—elevation of Stapleton is 5,330 feet.)

- 1-5.125 feet.
- 2--6,625 feet.
- 3-6,300 feet.
- 4-5,525 feet.
- 28. If you decide to use a true airspeed of 175 knots at a pressure altitude of 9,000 feet and a temperature of 6° C., you would need an indicated airspeed of (see airspeed correction table below)
 - 1-165 knots.
 - 2-148 knots.
 - 3-152 knots.
 - 4-160 knots.

Airspeed Correction Table Flaps-0

IAS (knots)	CAS (knots
140	138
150	148
160	158

29. The computed flight time from takeoff to Kansas City Municipal Airport is

- 1-2:41.
- 2--2:46.
- 3-2:36.
- 4-2:51.

- 30. The fuel required for this IFR flight is approximately
 - 1-520 lbs.
 - 2-643 lbs.
 - 3-553 lbs.
 - 4-655 lbs.
- 31. Determine the c.g. in inches aft of datum with a loading as shown below.

	Weight	Arm	Moment
	(lbs.)	(in.)	(lbin.)
Empty weight (includes 4 gal. unusable fuel)	3,147		283,746
Oil	45	55.0	2,475
Pilot & co-pilot			
seat	340	89.0	30,260
Middle seats	410	126.0	51,660
Rear seats	345	157.0	54,165
Fuel (4 tanks)	720	113.0	
Baggage (front) _	113	10.0	1,130
Baggage (rear)	80	183.0	14,640
	5,200 lbs.		

- 1 91.5
- 2 90.2
- 3-99.9
- 4-96.9
- 32. Assume that after takeoff at Stapleton, you lost your VOR navigation receivers and you elect to return to Stapleton. You are cleared for an NDB (ADF) approach to runway 26L (Figure 14). You turn outbound from the LOM on a heading of 077° and the ADF needle indicates 180° on roll out, but deflects to the left (clockwise) while you maintain a magnetic heading of 077, a correct procedure is to
 - 1—turn right 20° and fly a magnetic heading of 097° until the ADF needle deflects 20° to the left. At that time you are back on course and should allow for a wind from your right.
 - 2—turn left 20° and fly a magnetic heading of 057° until the ADF needle shows a deflection of 20° to the right. Then, turn right to 072° and if the wind correction you made was satisfactory, the ADF needle will remain on 180°.
 - 3—turn right 20° and hold that heading until the ADF needle indicates 200°,

- then turn to a heading of 082° to allow a 5° correction for the wind.
- 4—turn left 20 degrees to 057° and fly until the ADF needle indicates 200°, then turn right to a heading of 072° to allow a 5° correction for wind drift.
- 33. What is a correct sequence for tuning the DME on this flight from DEN to GLD? (See enroute chart, Figure 15.)
 - 1—Set DME on 110.3 (Stapleton) until reaching Byers; tune to TXC (112.9) until about 36.5 miles from GLD; then tune to GLD.
 - 2—Before takeoff, tune to DEN (116.3); when at TXC tune to GLD.
 - 3—Tune the DME to the same facility as you tune your No. 1 navigation receiver, and as soon as you change your navigation receiver to another facility, change the DME to that facility.
 - 4—Tune your DME to the navigation facility you are approaching unless it is over 100 miles between facilities.

* * * * * * * *

After takeoff, Stapleton tower instructs you to contact Departure Control on 124.8. You contact Departure Control and they confirm radar contact and vector you to intercept V4. You are also instructed to report reaching 9,000. You report reaching 9,000. Upon intercepting V4, Departure Control instructs you to contact Denver Center on 119.8.

* * * * * * *

- 34. The recommended phraseology for making contact with Denver Center is
 - 1—Denver Center—this is ASTRO 1234P 40 miles west of Thurman—9,000— Thurman at 2000Z—MKC—over.
 - 2—Denver Center—ASTRO 1234P—Thurman 2000Z—9,000—MKC—over.
 - 3—Denver Center—ASTRO 34P—MKC—over.
 - 4—Denver Center—ASTRO 1234P—9,000—over.
- 35. Assume that about 10 minutes after passing Thurman (TXC), you are told to contact Denver Center on 142.5. As you attempt

to change your communication receiver to this frequency, you realize it only goes to 129.9. You are unable to reestablish contact with Denver Center on 119.8. In this situation, you should attempt to contact

- 1-Denver Center on any other frequency listed on the enroute chart for Denver Center.
- 2—Goodland Radio on any standard FSS frequency or 122.3.
- 3-any ATC facility on 121.5.
- 4—Departure Control on 126.9.
- 36. The communication box at Goodland (Figure 15), indicates that
 - 1—all standard frequencies except 122.3 are available.
 - 2—only 122.3 is available.
 - 3—all standard frequencies and also 122.3 are available.
 - 4—all standard frequencies are available, but 122.3 is the best frequency to use.
- 37. At Topeka, you receive the following amended clearance: ASTRO 1234P CLEARED TO WOOD INTERSECTION V4N—DESCEND TO AND MAINTAIN 7000—EXPECT FURTHER CLEARANCE AT 2210Z. Upon arrival at Wood Intersection (still in radar environment), you should (area chart, Figure 16)
 - 1—call Kansas City Center and tell them you have arrived at Wood Intersection.
 - 2—go into a standard holding pattern with a direct entry to the pattern.
 - 3—hold at Wood Intersection until 2210, and then, if you have not received further clearance, continue to MKC.
 - 4—make a direct entry into a nonstandard holding pattern.
- 38. Before reaching Wood Intersection, you are instructed to contact Kansas City Approach Control. After contact, you are given a radar vector for an ILS approach to runway 18. While on a heading of 150°, you are cleared for an ILS approach. In this situation, you should

- 1—turn onto the localizer upon interception and make the approach as shown on the approach plate.
- 2—continue on a heading of 150° through the localizer as Approach Control may want to bring you back from the other side for spacing.
- 3—call Approach Control when you intercept the localizer for permission to track inbound.
- 4—turn onto the localizer upon interception and immediately call Kansas City Tower.
- 39. Which statement is correct regarding minimums for this approach (Figure 17)?
 - 1—Since this is a straight-in approach, the MDA is 400 ft.
 - 2-The MDA is 1,160 ft.
 - 3-The DH is 1,158 ft.
 - 4—Since this plate does not have the new format, a ceiling of 400 ft. and a visibility of 1 mile are required.

- 40. If you had to go to your alternate (Salina) and your DME was inoperative, which statement is true regarding your approach (Figure 18)?
 - 1—Although the wind is out of the south, you would have a lower MDA by circling to land from an ILS approach to runway 35 than by making a VOR runway 17 straight-in approach.
 - 2—Should you be cleared for a VOR approach to runway 17, you would have to make this approach to land at Salina.
 - 3—With a visibility of 3/4 mile, you could make either a VOR approach to runway 17 or an ILS approach to runway 35, even though the control tower was not in operation.
 - 4—If you were cleared for an approach while holding at the Salina VORTAC, you could make a straight-in approach.

Analysis of Answers to Sample Test Items

Item Answer

- To be current, a pilot must have made 5 takeoffs and 5 landings to a full stop in the category, class, and type aircraft he is to fly. He can meet the requirements of FAR 61.47 for carrying passengers at night by making the 5 takeoffs and landings in any aircraft.
- 2 4 See Airman's Information Manual, Part 1, "Air Navigation Radio Aids," for normal usable altitudes and further information.
- 3 1 ATC does not provide aircraft separation or control traffic except in controlled airspace.
- 4 2 The turn needle is independent of the "ball." If the turn needle is properly calibrated, it shows the correct rate of turn regardless of the position of the ball. (See IFR Exam-O-Gram No. 18.)

Item Answer

- 5 1 Since many NavCom transceivers utilize part of the receiver circuitry when the transmitter is operating, unreliable CDI indication may be obtained while transmitting.
- 6 4 For information on compass errors, see page 49 of the *Instrument Flying Handbook* (AC 61-27A).
- 7 2 The elevator trim should be used to relieve elevator control pressures. A change of power or airspeed requires a change of elevator trim. (See *Instrument Flying Handbook*, page 66.)
- 8 3 A. FAR Part 91.5.
 - B. There is no requirement to file either a VFR or IFR flight plan in this case, but it is considered a good practice.
 - C. FAR Part 91.5.
 - D. FAR Part 91.5. This is included in the phrase, "familiarize himself

with all available information concerning that flight." At the time of this publication, there is a Notice of Proposed Rule Making, proposing the amending of 91.5 to make this clear.

- 9 2 When the altimeter is set to 29.92 (standard pressure), the pressure altitude can be read directly from the altimeter, assuming no altimeter error.
- To determine magnetic bearing, use 10 magnetic heading. (In this problem variation and wind are not needed.)

Compass headi	ng	320°
Dev.		5° W.
Magnetic headi	ng	315°
Relative		
bearing	115°	
Magnetic		
heading	315°	
Magnetic		
bearing		
to station	430°-360°	or 70°
-	-180°	+180°
Magnetic	250°	250°
bearing		
from		
station		

- 11 4 An abrupt movement of the controls not only leads to over-controlling, but may put undue stress on the aircraft.
- 12 The ball indicates a skidding turn. The pilot is either holding right rudder, or the airplane is out of trim.
- 13 A. The greater the gross weight, the higher the stalling speed.
 - B. Correct as stated.
 - C. Since the airplane will stall at a higher airspeed, the approach speed should be increased.
 - D. Correct as stated.
 - E. The amount of load the stabilizer carries depends on the location of the center of gravity.
- 14 See AIM 1, "ATC Clearances/Separations—Clearance Items."

- 15 For further information on air flow, see Aviation Weather (AC 00-6).
- 16 A. Correct as stated (see Aviation Weather, page 117).
 - B. Frost does not form from dew, but directly from water vapor.
 - C. If the wings are cold, frost can occur as stated in A.
 - D. Correct as stated.
- 17 1 For further information on stability of air masses, see Aviation Weather, page 35.
- 18 For further information on runways, see Part 1 of AIM and IFR Exam-O-Gram No. 26.
- 19 The load factor for a 60° bank is 2, which requires twice the lift required for a load factor of 1.
- 20 1 A. Maximum endurance is attained at an airspeed that requires minimum power.
 - B. For propeller airplanes, minimum drag and minimum power do not occur at the same airspeed.
 - C. Correct as stated.
 - D. From the drag chart, notice that there are two speeds that have the same total drag.
- 21 Areas having IFR weather are enclosed by a solid line. South of SLN several stations are shown in Kansas inside an area enclosed by a scalloped This is an area of marginal VFR weather. (See IFR Exam-O-Gram No. 15.)
- 22Area forecast (Figure 5), indicates a freezing level of 7,000 in Nebraska and Iowa, sloping to 10,000 in SW Kansas. Clouds in Colorado are above your proposed altitude. Upper wind prog (Figure 7), indicates temperatures of +6° C. in Colorado and Kansas, and +1 C. at Kansas City; all above freezing.
- 23 Denver has a broken ceiling at 17,000; Topeka has a ceiling of 400 feet; the temperature at Wichita is 40° F.

Item Answer

- 24 1 Power settings with various r.p.m. and manifold pressure combinations are listed in Figure 13 for 65% rated hp.

 The lowest r.p.m. results in the least fuel consumption as illustrated by Part throttle fuel consumption chart, Figure 10.
- 25 1 With a gross weight of 5,200 lbs., the Single engine climb rate chart (Figure 11), indicates an absolute ceiling of 6,200 ft. The airplane is capable of a 20 ft./min. climb at 6,000 ft.
- 26 1 Figure 12 indicates that at 9,000 feet, the true airspeed should be 200 m.p.h. or 174 knots.
- 27 3 Elevation _____ 5,330 ft.

 Correction for
 non-standard
 (30.06) ____ -129 ft.
 Pressure altitude 5,201 ft.

 Density altitude
 from chart
 (PA 5,201
 @ 58° F.) ____ 6,300 ft. (approx.)
- 28 3 The CAS is 150 knots. In this airspeed range, the IAS is 2 knots greater, or 152.
- 29 1 Avg. wind (true)
 DEN to SLN=230° @ 18 knots
 SLN to MKC=245° @ 19 knots
 If one desires to change the true wind
 to magnetic, subtract average easterly
 variation.

Avg. wind (magnetic)
DEN to SLN=219° @ 18 knots
SLN to MKC=236° @ 19 knots
Avg. mag. course TXC to SLN=088°

From	To	GS	Time
Byers	\mathbf{TXC}	187	:13.8
TXC	SLN	186	1:26.0
SLN	MKC	192	:44.8
MKC	SLN	163	:53

30 4 Subtracting 12 minutes from the total time of 2:41, gives 2:29. Using 143 lb./hr. fuel flow, the fuel burn to MKC should be 355+50 or 405 lbs.

Item Answer

It should take approximately 60 min. to go to the alternate, resulting in a fuel burn of 143 lbs. The reserve requirement is 45 minutes or a fuel burn of 107 lbs.

- 31 3 The moment for the fuel is 720×113 or 81,360; a total moment of 519,436. Dividing 5,200 into this, gives a c.g. of 99.9" aft of datum.
- 32 2 TXC is not a VORTAC, therefore, has no DME signal.
- 33 4 See IFR Exam-O-Gram No. 23 for ADF procedures.
- 34 4 Since you are in radar contact, no position report is required; however, the center will want you to verify your altitude.
- 35 2 Goodland Radio has all standard FSS frequencies and an additional frequency of 122.3. If you cannot reestablish contact with Denver Center on 119.8, you should try to contact the nearest FSS which is Goodland Radio.
- 36 3 Explained above.
- 4 It is not necessary to make position reports when in radar environment unless requested. Both the enroute chart and area chart show a holding pattern with left turns which is non-standard. See AIM 1, "ATC Clearances," and "Enroute-IFR" for more information.
- 38 1 When you are cleared for the approach, you are expected to make necessary turns to make the approach. However, you do not call the tower until so instructed by Approach Control.
- 39 3 Since the AL Chart is not the new format, for a straight-in approach add the ceiling of 400 feet to the field elevation. This is a DH of 758 ft.
- 40 1 An ILS RWY 35 circling approach has an MDA of 1700, while the VOR straight-in approach is 1740. If you

were cleared for a VOR approach and did not think you could safely make it, you could request the ILS approach. However, should Approach Control have a large amount of traffic, unless you had more than a loss of DME, they might delay your clearance and put you in a holding pattern until they could work you in for the ILS approach.

Appendix

This section contains supplementary data for use with the sample test.

FLIGHT TIME ANALYSIS

CHECK	POINTS	STUOM Cause	Mag	Mag		WINDS ALOFT DIRECTION	DEDL		DISTANCE	TIME		CONST	JEL MPTION CALS.	MISC.	
FROM	110	ALT./FLT. LEVEL	Avg Course	EAS OR MACH NO	TAS	VELOCITY TEMPERATURE	ANGLE	#PEED	N.M.	LEC	TOTAL	FEC	TOTAL		
Stapleton Airport	Byers	Radar Vector						-		12.0	12	50 *	50	*Includes ta and warm up.	
yers	TXC	V4 9000	083		175	**									
xc	SLN	ti ti			11										
BLN	MKC	11	072°		n										
AKC.	K.C. Muni			<u> </u>						4.8					
	ļ	<u> </u>		<u> </u>		<u> </u>								<u> </u>	
		ļ	<u> </u>		ļ									ļ <u></u>	
		<u> </u>	<u> </u>				<u> </u>							ļ	
	ļ	ļ		<u> </u>	<u> </u>									<u> </u>	
															
· · ·			 	<u> </u>	<u> </u>		-	ļ						<u> </u>	
ALTERNAT	E DIZ.	ļ	<u> </u>												
)			<u> </u>	<u> </u>							FUEL SUMI		
C Muni	MKC					Mag. Wind				7.0	7.0		I LAGE.	LBS./GALS.	
KC	SLC		ļ .	ļ	172	220°=11 kts						ENROUTE		 	
			<u> </u>	L								ALTERNATE		 	
** Obtain	wind aloft	from 12 hr. upp	er wind	prog., l	Figure :	8. Use average	of DE	N and	HLC w	inds fo	r	RESERVE			
ugnt to Use fa	uel burn of	LN), use averag 143 lb/hr unles	e or ML ss fuel b	urn is s	hown on	8. Use average nds for flight fr a Flight Time As	om Sal Ialysis.	ina to K	ansas C	ity.		EXTRA			

TOTAL

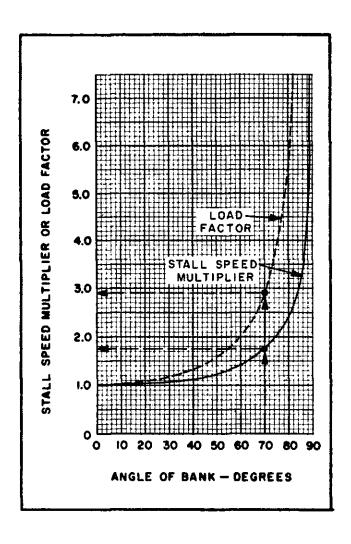
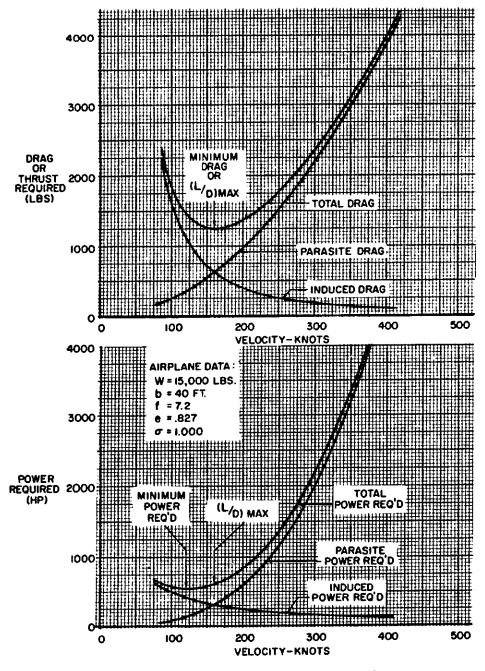



FIGURE 2. Stall speed multiplier or load factor.

Airplane Thrust and Power Required

FIGURE 3. Airplane thrust and power required.

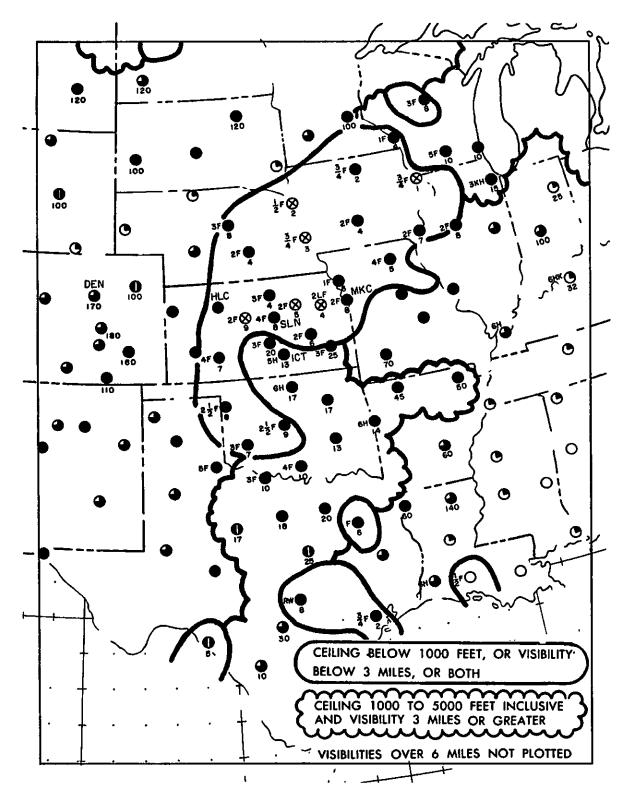


FIGURE 4. Weather depiction chart.

FA MKC 171845Z 192 WED-Ø7Z THU

NEB EXCP PNHDL IA KANS MO

HGTS ASL UNLESS NOTED.

SYNOPSIS. WDSPRD LOW ST AND FOG THU MOST OF FCST AREA WITH LTL IPVMT EXPCD THRU PD.

CLDS AND WX...

MOST OF IA NRN TWO THIRDS OF MO CNTRL AND ERN KANS PTNS OF SCNTRL AND ERN NEB C2-501-3F OCNL C2X1/2FL-- SERN HLF IA NWRN MO AND NERN KANS. SLO IPVMT EXTRM WRN EDGES BY ØØZ HWVR CONDS SPRDG SLOLY SWD RMNDR MO.

EXTRM S CNTRL AND SERN KANS SRN THIRD AND E CONTRL MO C15-350V03-5FK OR HK LWRG C8-1202-5F WITH OCNL L-- BY ØLZ.

WRN KANS C120030007 WITH -X1-3GF SWRN HLF CHC C6-801F AND BCMG C4-603F BY 04Z SWRN PTNS.

N CNTRL NEB. 1000300-0 WITH CHC 120250C1000.

ICG. LGT TO OCNL MDT MXD ICGICIP. FRZLVL NEB AND IA SLPG TO 70-100 EXTRM SWRN KANS.

TURBC. LGT TO LCLLY MDT TURBC BLO 70 CNTRL NEB NWRN KANS.

OTLK Ø7Z-19Z THU. CONDS ERN NEB N CNTRL KANS LFTG 18-3Ø#VØ5F BY 14Z AND 4ØØ8ØØ7 BY 19Z LTLCG ELSW.

FA DEN 181845 192 WED-Ø7Z THU

COLO WYO NEB PNHDL

HGTS ASL UNLESS NOTED

SNYS. HI PRES W OF CONTDVD. WK TROF OF LO PRES ERN PRNS OF AREA DRFTG EWD

CLDS AND WX. OVR AREA. 170-200000300 LCLY A FEW AREAS 100-120000 OVR EXTRM NWRN WYO WITH ISOLD SNW SHWRS. OCNL MTN OBSCMT VCNTY SNW SHWRS

ICG. NONE OF CONSEQUENCE. FRZLVL 90-100 NRN WYO TO 110-120 COLO

TURBC. LGT TO LCLY MDT W OF CONTDVD COLO. ELSW OVER AND NEAR MTNS MDT TURBC LCLY SVR WITH UDDF ALG ERN SLPS OF MTNS. MTN WAVE LKLY E OF CONTDVD WYO AND NRN COLO 220-390 WITH LGT TO LCLY MDT CAT

OTLK \$72-19Z THU. NO SGFNT CHGS

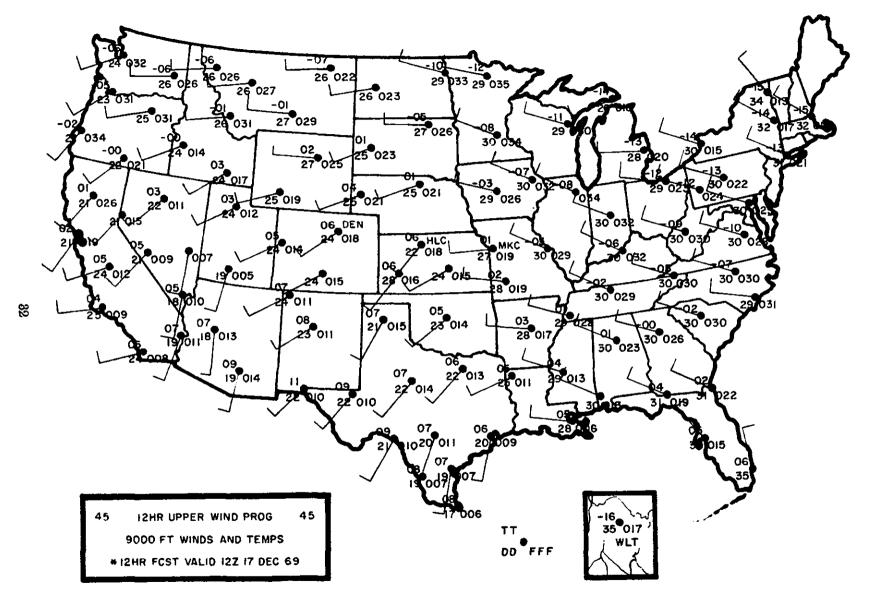


FIGURE 7. 12-hour upper wind prog.

```
DEN E17ØΦ25ØΦ6Ø 172/58/13/ØØØØ/ØØ6/ACSL ALQDS
→DEN¥12/8 ASE OA 12/9 ASE XX
GLD 1\u00dap@€15+ 168/\u00e48/3Ø/3Ø1Ø/ØØØ
HLC 1Ø-⊕7 195/\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e
```

Power Setting Table-Lycoming Model 10-540-C485, 250 HP Engine

Press Alt. 1000	Std. Alt. Temp.	Appro	138 HP - 55% Reted Approx. Fuel 10.6 Gal./Hr, RPM AND MAN. PRESS,				t. Fuel	65% Rati 11.9 Ga IAN, PRI	188 HP - 75% Rated Approx. Fuel 13.7 Gal./Hr. RPM AND MAN. PRESS.			
Peet	OF	2100	2200	2300	2400	2100	2200	2300	2400	2200	2300	2400
SL	59	21.9	21.0	20.2	19.6	24.6	23.5	22.7	22.0	26.2	25.2	24.4
1	55	21.7	20.8	20.0	19.4	24.4	23.3	22.5	21 6	25.9	25.0	24 . 1
2	52	21.4	20.6	19.8	19.2	24 . L	23.0	22.2	21 5	25.6	24.7	23.9
3	48	21.2	20.3	19.6	19.0	23.8	22.8	22.0	21.3	25.3	24.5	23.6
4	45	20.9	20.1	19.4	18.8	23 6	22.5	21.8	21.1	25.0	24.2	23.4
5	41	20.7	19.9	19.2	18.6	23.3	22.3	21.5	20.9	24.8	24.0	23.1
6	38	20.5	19.6	19.0	18.4	23.1	22.0	21.3	20.7	24.6	23.8	22.9
7	34	20.2	19.4	18.8	18.2	22.8	21.8	21.1	20.4	•	23.6	22.7
8	31	20.0	19.2	18.5	18.0	22,6	21.5	20.8	20.2	-+-		22.5
9	27	19.8	18.9	18.3	17.8	22.4	21.3	20.6	20.0			
10	23	19.5	18.7	18.1	17.6		21.1	20.3	19.8			
11	19	19.3	18.5	17.9	17.4			20.1	19.6			
12	16	19.1	18.2	17.7	17.2				19.4			
13	12	18.9	18.0	17.5	17.0							
14	9		17.8	17.3	16.8	When usi	ng Harti	zeu Prop	elier H	C-E2YK-2RI OT EXCEED	78405	K Nibul D
15	5		•••	17.1	16.6	PRESSUR	E BELO	W 2300	RPM or	25" BELOW	2000 R	PM.

To maintain constant power, correct manifold pressure approximately 0.17" Hg. for each 10° P variation in induction air temperature from standard altitude temperature. Add manifold pressure for air temperatures above standard; subtract for temperatures below standard.

FIGURE 9. Power setting table.

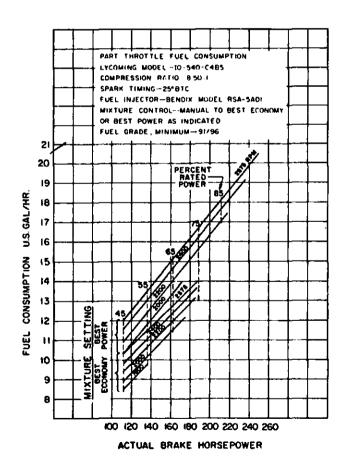


FIGURE 10. Part throttle fuel consumption chart.

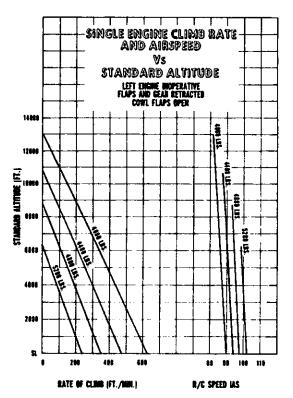


FIGURE 11. Single engine climb rate chart.

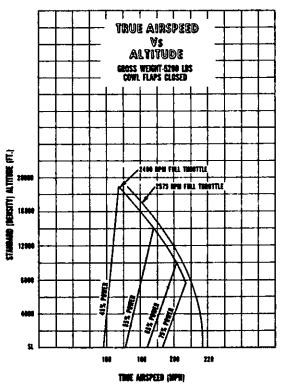


FIGURE 12. True airspeed chart.

SET ALTIMETER TO 29.92 IN. HG.

FIGURE 13. Pressure altitude density chart.

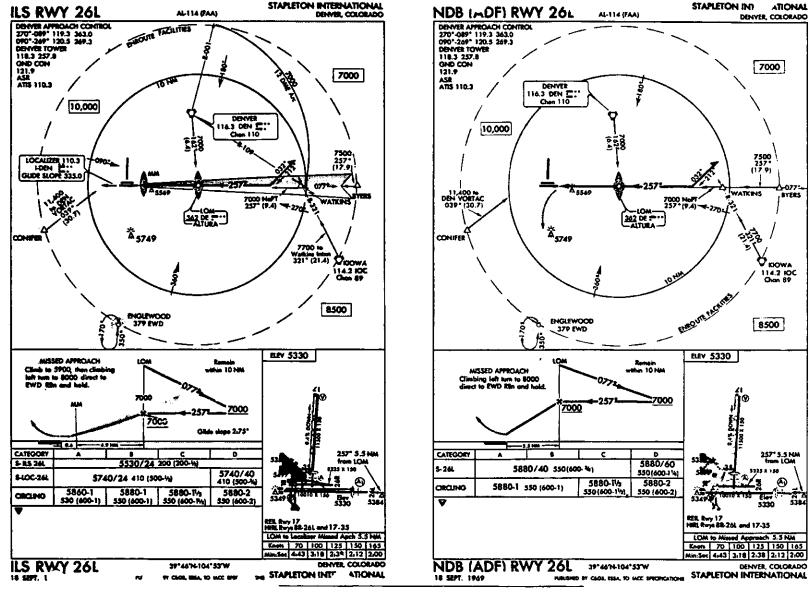


FIGURE 14. Instrument approach procedure charts—Denver, Colo.

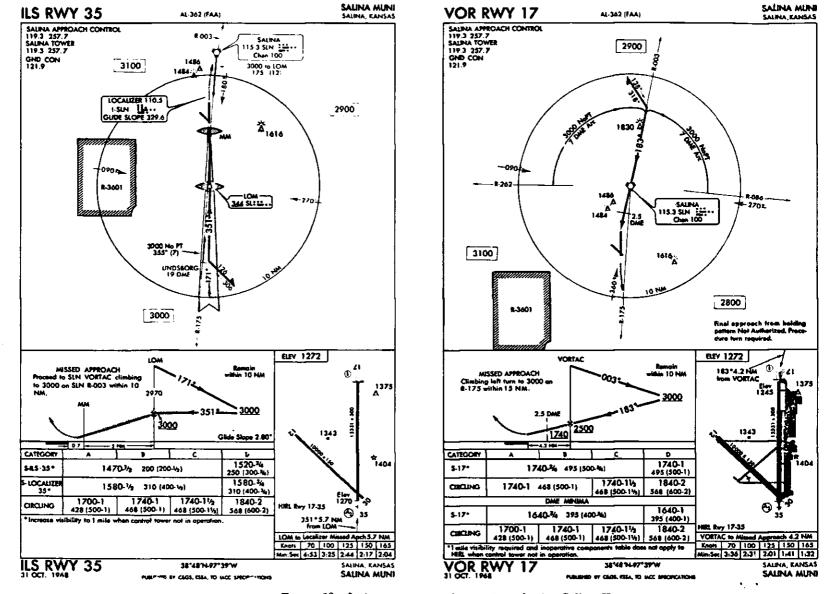


FIGURE 18. Instrument approach procedure charts-Salina, Kans.